Copulas are simply equivalent structures to joint distribution functions. Then, we propose modified structures that depend on classical probability space and concepts with respect to copulas. Copulas have been presented in equivalent probability measure forms to the classical forms in order to examine any possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some probabilistic constructions have been shown within independent, and conditional probability concepts. A Bay's probability relation and its properties were discussed with respect to copulas. Moreover, an extension of multivariate constructions of each probabilistic copula has been presented. Finally, we have shown some examples that explain each relation of copula in terms of probability space instead of distribution functions.
Abstract
In this research provide theoretical aspects of one of the most important statistical distributions which it is Lomax, which has many applications in several areas, set of estimation methods was used(MLE,LSE,GWPM) and compare with (RRE) estimation method ,in order to find out best estimation method set of simulation experiment (36) with many replications in order to get mean square error and used it to make compare , simulation experiment contrast with (estimation method, sample size ,value of location and shape parameter) results show that estimation method effected by simulation experiment factors and ability of using other estimation methods such as(Shrinkage, jackknif
... Show MoreIn this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
The subject of demand on oil derivative has occupied an important position at present time in the daily life context. The fuel of benzene and gas oil and kerosene is one of basic elements of that concern, and on local , regional and international levels. The oil derivatives have played a leading role in determining the course and nature of development since early 1970 to the present time whether in the productive Arab countries or the importing. The researcher set out from the hypothesis that the increase of the local consumer demand on some of the oil derivatives is because of the internal and external factors accompanied by the inability of the productive capability and local production to confront this increase, and the resort
... Show MoreThis paper aims to study the quaternary classical continuous optimal control problem consisting of the quaternary nonlinear parabolic boundary value problem, the cost function, and the equality and inequality constraints on the state and the control. Under appropriate hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary value problem has a quaternary classical continuous optimal control vector that satisfies the equality constraint and inequality state and control constraint. Moreover, mathematical formulation of the quaternary adjoint equations related to the quaternary state equations is discovered, and then the weak form of the quaternary adjoint
... Show MoreIn this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreAbstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
Inflammatory response had a role in cancer progression, presence of noticeable inflammation within the tumor and its margin may play an important prognostic role in colorectal carcinoma.