Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that continuous efforts are required to improve the development of HIPs base text. In this paper, a new proposed scheme is designed for animated text-based HIP; this scheme exploits the gap between the usual perception of human and the ability of computer to mimic this perception and to achieve more secured and more human usable HIP. This scheme could prevent attacks since it's hard for the machine to distinguish characters with animation environment displayed by digital video, but it's certainly still easy and practical to be used by humans because humans are attuned to perceiving motion easily. The proposed scheme has been tested by many Optical Character Recognition applications, and it overtakes all these tests successfully and it achieves a high usability rate of 95%.
An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
ABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreAs cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficie
... Show MoreMonetary policy is an important part of the economic policy to influence the monetary aspect of stabilization, for this reason the research will seek to clarify the extent of the impact of monetary policy in achieving monetary stability in Iraq during the chosen research period, because the Iraqi economy suffers from monetary instability due to political and security turmoil, Therefore, an effective and effective monetary policy is required in terms of reducing inflationary pressures to reach the required monetary stability, in order to create the appropriate monetary environment for the work of the economic and productive sectors. Thus, the research adopted a basic hypothesis that monetary policy in Iraq has a clear impact on achieving mon
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively