Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that continuous efforts are required to improve the development of HIPs base text. In this paper, a new proposed scheme is designed for animated text-based HIP; this scheme exploits the gap between the usual perception of human and the ability of computer to mimic this perception and to achieve more secured and more human usable HIP. This scheme could prevent attacks since it's hard for the machine to distinguish characters with animation environment displayed by digital video, but it's certainly still easy and practical to be used by humans because humans are attuned to perceiving motion easily. The proposed scheme has been tested by many Optical Character Recognition applications, and it overtakes all these tests successfully and it achieves a high usability rate of 95%.
This research is one of the public research aimed at identifying the communication habits and the implications of the content on the communication process, especially as the audience of specialized media is often characterized by effectiveness, depth and active in tracking the media message and interaction with its content. It means such audience is a positive, very active, dynamic, and very alert audience driven by his interests and psychological needs to watch specific programs meet his desires.
This satisfaction can only be achieved through the use of specialized media capable of producing programs that will communicate and interact between the ideas you present and this audience.
The phenomenon of specialized satellit
... Show MoreThe efficient removal of dissolved organic compounds (DOC) from wastewater has become a major environmental concern because of its high toxicity even at low concentrations. Therefore, a technique was needed to reduce these pollutants. Ion exchange technology (IE) was used with AmberliteTM IR120 Na, AmberliteTM IR96RF, and AmberliteTM IR402, firstly by using anion and mixed bed system, where the following variables are investigated for the process of adsorption: The height of the bed in column (8,10 and 14 cm), different concentrations of (DOC) content at constant flow rate. The use of an ion exchanger unit (continuous system) with three columns (cation, anion, and mixed bed) was studied.
... Show MoreThis research will cover different aspects of estimating process of construction work in a desert area. The inherent difficulties which accompany the cost estimating of the construction works in desert environment in a developing country, will stem from the limited information available, resources scarcity, low level of skilled workers, the prevailing severe weather conditions and many others, which definitely don't provide a fair, reliable and accurate estimation. This study tries to present unit price to estimate the cost in preliminary phase of a project. Estimations are supported by developing mathematical equations based on the historical data of maintenance, new construction of managerial and school projects.
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for