Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and Ag NPs. Serially concentrations of Ag NPs were used under two conditions during and following macrophages exposure to L. tropica. MTT assay was used to determine the cytotoxicity of Ag NPs on L. tropica amastigotes during infection of macrophages in vitro. The results showed that by increasing the Ag NPs concentrations, the viability percentage of L. tropica amastigotes decreased and reached to 21.7 ± 0.64 % during infection compared with the control. The 50% inhibitory concentration of Ag NPs on amastigotes was 2.048µg/ml during infection. Moreover, post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to L. tropica. It have shown that untreated macrophages released low levels of NO while in the presence of Ag NPs, macrophages were activated to produce higher levels of NO under all experimental conditions. On the other hand, macrophages were capable of controlling cytotoxicity and decreasing LDH levels during phagocytosis of L. tropica amastiogotes. Taking together, these findings suggest that Ag NPs can enhance macrophages NO production which provides a method for the identification of Ag NPs ligands with microbicidal and anti-cytotoxic properties against L. tropica pathogens.
Objective: To diagnose the function of natural biomolecules in the biological reduction of metal salts during nanoparticle synthesis.Study Design: Experimental studyPlace and Duration of Study: This study was conducted at the College of Education for Pure Sciences/Ibn Al- Haitham at the University of Baghdad from 1st January 2024 to 31st March 2025. Methods: Capsicum plant extract was used and treated with a readily available inorganic salt (CaSO4 2H2O). It was used as a basic material to obtain particles.Results: Calcium peroxide nanoparticles in the form of a yellowish-white powder were confirmed by using, UV, XRD, SEM, TEM, AFM, and EDX, confirmed that the compound is calcium peroxide nanoparticles with an average nano size of 31
... Show MoreObjective: To diagnose the function of natural biomolecules in the biological reduction of metal salts during nanoparticle synthesis.Study Design: Experimental studyPlace and Duration of Study: This study was conducted at the College of Education for Pure Sciences/Ibn Al- Haitham at the University of Baghdad from 1st January 2024 to 31st March 2025. Methods: Capsicum plant extract was used and treated with a readily available inorganic salt (CaSO4 2H2O). It was used as a basic material to obtain particles.Results: Calcium peroxide nanoparticles in the form of a yellowish-white powder were confirmed by using, UV, XRD, SEM, TEM, AFM, and EDX, confirmed that the compound is calcium peroxide nanoparticles with an average nano size of 31
... Show MoreThe manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scan
... Show MoreKlebsilla pneumoniae is one of must opportunistic pathogens that causes nosocomial infection, UTI, respiratory tract infections and blood infections. ZrO2 nanoparticles have antimicrobial activity against some pathogenic bacteria and fungi. Ceftazidime is one of third generation cephalosporins groups of antibiotecs, characterized by its broad spectrum on bacteria in general and particularly on Enterobacteriaceae family like Klebsiella spp. Method: Diverse clinical samples of Klebsilla pneumoniae were isolated from several hospitals in Baghdad – Iraq and ZrO2 nanoparticles was investigated against it. Ceftazidime was also investigated against K. pneumoniae. Both of ZrO2 nanoparticles and ceftazidime were mixed together and investigated aga
... Show MoreIn this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreThe object of research is studying Raman scattering technique, photoluminescence and some optical properties of silver nanoparticles created by eco-friendly technique which independent on a long time, effort, energy and high temperatures, and with the highest adsorption capacity in order to achieve a high inhibition to paralyze the activity of the bacterial wall, by achieving the highest surface plasmon resonance (SRR). Silver nanoparticles were prepared using Matricaria Flower extract. Characterization of silver nanoparticles and detection of their effectiveness against microbial using two types of bacteria (Escherichia Coli and Staphylococcus aureus ), these nanoparticles were measured using a number of measurements, X-ray diffrac
... Show MoreThe preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreAssessment of Salivary Macrophage Inflammatory Protein-1 Alpha Level in Different Stages of Periodontitis, Riyam Muthanna Muhammed*, Hadeel Mazin Akram