Pseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The results of this study indicate that 100% of P. aeruginosa isolates harbored the gyrB gene, whereas 74% of these isolates harbored ETA gene. However, the specificity of PCR for detection of P. aeruginosa based on the both genes was 100%, since no amplified product obtained using DNA extracted from other bacterial species. Hence by considering the importance of rapid detection of this bacterium due to the presence of problems in biochemical methods, PCR targeting multiple virulence genes is suggested in identification of pathogenic strains of P. aeruginosa isolated from some infections which should speed diagnosis of an antimicrobial therapy.
With the development of communication technologies for mobile devices and electronic communications, and went to the world of e-government, e-commerce and e-banking. It became necessary to control these activities from exposure to intrusion or misuse and to provide protection to them, so it's important to design powerful and efficient systems-do-this-purpose. It this paper it has been used several varieties of algorithm selection passive immune algorithm selection passive with real values, algorithm selection with passive detectors with a radius fixed, algorithm selection with passive detectors, variable- sized intrusion detection network type misuse where the algorithm generates a set of detectors to distinguish the self-samples. Practica
... Show MorePlagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and
... Show MoreGlaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d
HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
The seizure epilepsy is risky because it happens randomly and leads to death in some cases. The standard epileptic seizures monitoring system involves video/EEG (electro-encephalography), which bothers the patient, as EEG electrodes are attached to the patient’s head.
Seriously, helping or alerting the patient before the seizure is one of the issue that attracts the researchers and designers attention. So that there are spectrums of portable seizure detection systems available in markets which are based on non-EEG signal.
The aim of this article is to provide a literature survey for the latest articles that cover many issues in the field of designing portable real-time seizure detection that includes the use of multiple
... Show MoreBackground:Wilson’s disease (WD) is an inherited
disorder of copper metabolism that is characterized
by tremendous variation in the clinical presentation.
Objective: To assess demographic distribution,
clinical presentations, diagnostic evaluation, and any
association between clinical presentations and other
studied variables of a sample of Iraqi patients with
WD.
Methods: A descriptive cross sectional study with
analytic elements was conducted during 2011, from
the 1st of February till the 10th of June. The sampling
method was a convenient non-random one, carried
out through consecutive pooling of registered WD
patients. A questionnaire-form paper had been
developed for the process of data col
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show More