In this study, the zinc oxide NPs have been synthesized from the fresh pomegranate peels extract using the precipitation method. The ZnO nanoparticles were produced from the reaction of fresh peels extract with zinc acetate salt which was used as zinc source in the presence of 2 M NaOH. The green synthesized nanoparticles were characterized through X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy, Fourier transform infrared spectroscopy (FTIR), and Atomic force microscopy (AFM). The XRD patterns confirm the formation of hexagonal wurtzite phase structure for ZnO synthesized using pomegranate peels extract with average crystalline size of 28 nm. FTIR spectra identify the presence of many active functional groups for the pomegranate extract which is ideal to bind with zinc acetate to produce the ZnO nanoparticles during the preparation method. The reflection spectra of green synthesis ZnO with pomegranate extract observed a blue shift towards lower wavelength with (8 nm) difference compared to ZnO without the addition of any extract. The provenance of such blue shift towards shorter wave length was due to the quantum size effect. The Atomic force microscopic (AFM) result shows average roughness value for ZnO nanoparticles of 6.26 nm. The decolorization efficiency of the methylene blue dye was investigated using the ZnO nanoparticles under sun light irradiation and it was compared with the bare ZnO synthesized without the addition of extract. The catalytic activity was about 88% after 60 min of sunlight irradiation for both prepared catalyst however, the decolorization efficiency of ZnO with the addition of extract was higher at the first 16 min compared to bare ZnO.
In this paper we study the effect of adding Zinc Oxide powder (ZnO) at different ratios (10%,20%,30%,40%,50%) as particles and organic dyes rhodamine B(RhB), rohdamine 6G(Rh6G) and eosin(EO) are added at different doping ratios to polystyrene (PS), to form photosensitized(PS/ZnO/dye) composites, for samples were prepared as films by spin method. Photoconductive properties are investigated. For I-V characteristic measurements, the photocurrent (Iph) and dark current (Id) are generally increased in non linear behavior with increasing light intensity and applied voltage for all composites. The photocurrent goes decrease through its maximum value at high white light intensities or high voltage for 2.4*10-
... Show MoreThis paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation
... Show MoreIn the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreTh r:ats for the photo induced eleytr-on tra;nsfer reactions in the
Methylen-e blue 'l'vffi+ ·dye· with benzo_phenone (ABP) ketone in variety
solvc;:nts al n:loin tempemtme ha;ve qn calculated . Electron trans_ fer
-rates are large in• }stt:on;gly--'{:'lolaf- solvent and week in-l s.s :polar solvent.
the high values o:E t±te r.tes a_f electro-n tr;ans-fer indicate that tite dye
triplet i$ mqre, r activ.e toWard ABP ket-one.
This work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show MoreIn this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest deg
... Show MoreBackground: One of the strongest risk factors for breast cancer is high breast density, relatively little fat in the breast and more connective and glandular tissue.
Objectives: this study aims to measure risk of increase breast density in correlation of CA breast & compare our results with results in other population, to compare the performance of ultrasonography and mammography in measuring breast density according to BIRDS system
Materials &methods: The study included 45 females .Measuring risk of increase breast density in correlation of CA breast & comparing the performance of ultrasonography and mammography in measuring breast density according to BIRADS system.
Results : there is stron
Recently, important efforts have been made in an attempt to search for the cheapest and ecofriendly alternatives adsorbents. In the present work, waste molasses from Iraqi date palm (Zahdi) had been used as a provenance to produce charcoal for the removal of methylene blue (MB) dye from water. The optimum prepared charcoal was obtained at 150 C, by increasing temperature to 175 C, the charcoal had almost converted to ash. The obtained charcoal have been inspected for properties using scanning electron microscope (SEM), atomic force microscope (AFM), porosity and surface area. Adsorption data were optimized to Langmuir and Freundlich and adsorption parameters have been evaluated. The thermodynamic parameters like a change
... Show More