In this study, the zinc oxide NPs have been synthesized from the fresh pomegranate peels extract using the precipitation method. The ZnO nanoparticles were produced from the reaction of fresh peels extract with zinc acetate salt which was used as zinc source in the presence of 2 M NaOH. The green synthesized nanoparticles were characterized through X-ray diffraction (XRD), UV-Vis diffuse reflection spectroscopy, Fourier transform infrared spectroscopy (FTIR), and Atomic force microscopy (AFM). The XRD patterns confirm the formation of hexagonal wurtzite phase structure for ZnO synthesized using pomegranate peels extract with average crystalline size of 28 nm. FTIR spectra identify the presence of many active functional groups for the pomegranate extract which is ideal to bind with zinc acetate to produce the ZnO nanoparticles during the preparation method. The reflection spectra of green synthesis ZnO with pomegranate extract observed a blue shift towards lower wavelength with (8 nm) difference compared to ZnO without the addition of any extract. The provenance of such blue shift towards shorter wave length was due to the quantum size effect. The Atomic force microscopic (AFM) result shows average roughness value for ZnO nanoparticles of 6.26 nm. The decolorization efficiency of the methylene blue dye was investigated using the ZnO nanoparticles under sun light irradiation and it was compared with the bare ZnO synthesized without the addition of extract. The catalytic activity was about 88% after 60 min of sunlight irradiation for both prepared catalyst however, the decolorization efficiency of ZnO with the addition of extract was higher at the first 16 min compared to bare ZnO.
In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q, this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo
... Show MoreThis research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate
... Show More
The research aims to identify the magnitude of the impact of external debt on the gross domestic product in Morocco, and the importance of research lies in the role that external debt plays in addressing structural imbalances, if it is best disposed of according to well-studied economic plans by specialists in this regard, especially if these debts are directed with Other resources, as it helps pay the costs of these debts (debt servicing) that the external debt also raises the level of gross domestic product, and the research starts from the hypothesis that: There is an effect of foreign debt on the GDP in Morocco, has contributed in one way or another to The exacerbation of the external debt, which affected the m
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreThe development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to both the pharmaceutical industry and the agencies that regulate them. Natural surfactants aid in the dissolution and subsequent absorption of drugs with limited aqueous solubility. In vitro, various techniques have been used to achieve adequate dissolution of the sparingly water – soluble or water insoluble drug products such as the use of mechanical methods (i.e., increased agitation and the disintegration method) or hydro alcoholic medium or large volumes of medium. The necessity of assuring the quality of drugs , especially those with low aqueous solubility and in vivo absorption , has led to the development and
... Show MoreBackground: Cervical ectopy advanced to erosion is one of the common conditions in gynecological and pathological study. It is considered as a physiologic condition resulting from columnar epithelium migration from the cervical canal into the vaginal portion of the cervix, in which no treatment for asymptomatic cervical ectropion can be given. Treatment can be accomplished via thermal cauterization (Electro cautery), Cryosurgery. CO2 laser therapy is another modality of treatment.
Objective: To study the effectiveness of CO2 laser therapy and evaluate it as a biomedical tool for the treatment of cervical ectropion. The study was done at Laser Medicine Research Clinic at the
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show More