Groundwater quality investigation has been carried out in the western part of Iraq (west longitude '40°40). The physicochemical analyses of 64 groundwater samples collected from seven aquifers were used in the determination of groundwater characterization and assessment. The concept of spatial hydrochemical bi-model was prepared for quantitative and qualitative interpretation. Hydrogeochemical data referred that the groundwater is of meteoric origin and has processes responsible for observed brackishness. The geochemical facies of the groundwater reveal that none of the anions and cations pairs exceed 50% and there are practically mixtures of multi-water types (such as Ca–Mg–Cl–HCO3 and Na+K–SO4–Cl water type) as dominant types. The hydrogeochemical evolution indicates that the groundwater is mainly controlled by the leaching and dissolution process of carbonate minerals. Increasing salt content is observed at different static water levels (groundwater flow) confirming mixing cases with multi water sources. Anthropogenic activities do not have a significant alteration in the geochemical nature of groundwater in aquifer systems. Most of the groundwater is classified within the category of C3S1 and C2S1 denoting admissible to good quality of water for irrigation in 67% of the total samples. On the other hand, 33% of samples are classified as bad to very bad. The groundwater of most aquifers has precedence for irrigation, agricultural purposes, animal drinking, and good to fair class for natural preserve activities. While the groundwater of Mullusi and Jeed-Rattga aquifers are suggested for human drinking purposes. Also, the groundwater within the hydrogeologic system can be used in low-pressure boilers, mining, construction industry, and unsafe in high-pressure boilers due to the relatively high total hardness (237 to 1456 mg/l). Corrosively ratio indicates that 83 % of exploited groundwater from boreholes is safe for long transport through metallic pipelines.
This paper presents a computer simulation model of a thermally activated roof (TAR) to cool a room using cool water from a wet cooling tower. Modeling was achieved using a simplified 1-D resistance-capacitance thermal network (RC model) for an infinite slab. Heat transfer from the cooling pipe network was treated as 2-D heat flow. Only a limited number of nodes were required to obtain reliable results. The use of 6th order RC-thermal model produced a set of ordinary differential equations that were solved using MATLAB - R2012a. The computer program was written to cover all possible initial conditions, material properties, TAR system geometry and hourly solar radiation. The cool water supply was considered time
... Show MoreIn the past infectious diseases affected the quality of lifestyle during home confinement. The study conducted examines the influence of home confinement during the COVID-19 pandemic outbreak on lifestyle, mental wellbeing, nutritional status, and sleeping pattern.
An online multicategorical questionnaire was distributed to collect demographic information combined with the following tools: Food Frequency Questionnaire (FFQ), International Physical Activity Questionnaire (IPAQ), WHO-5 wellbeing score, and Pittsburgh Sleep Quality Index (PSQI). A snowball non-discriminate sampling procedure was
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreBackground: Ultrasonography has been used to examine the thickness of the lower uterine segment in women with previous cesarean sections in an attempt to predict the risk of scar dehiscence during subsequent pregnancy. The predictive value of such measurement has not been adequately assessed. Objectives: To correlate lower uterine segment thickness measured by trans abdominal ultrasound in pregnant women with previous cesarean section with that measured during cesarean section by caliper and to find out minimum lower uterine segment thickness indicative of integrity of the scar.Methods: A prospective observational study at Elwyia Maternity Teaching Hospital, from January 2011 to January 2012. A total of 143 women were enrolled in the stu
... Show More