Preferred Language
Articles
/
bsj-3187
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

                                 

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Solving the Hotdog Problem by Using the Joint Zero-order Finite Hankel - Elzaki Transform
...Show More Authors

This paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Spiking Neural Network in Precision Agriculture
...Show More Authors

In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system  is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p

... Show More
View Publication Preview PDF
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Three-Dimensional Nonlinear Integral Operator with the Modelling of Majorant Function
...Show More Authors

In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.

Mathematical Subject Classificat

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu May 05 2016
Journal Name
Global Journal Of Engineering Science And Researches
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE
...Show More Authors

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
New Approach for Solving Multi – Objective Problems
...Show More Authors

  There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.

View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
In vitro isolation and expansion of neural stem cells NSCs
...Show More Authors

   Neural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solvability of Some Types for Multi-fractional Integro-Partial Differential Equation
...Show More Authors

In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions. 

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref