Preferred Language
Articles
/
bsj-2993
Acoustic and Thermal Insulation of Nanocomposites for Building Material: Improvement Of Sound And Thermal Insulation Properties Of Nanocomposite
...Show More Authors

This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcement materials to the optimum sample. Results of impact test prove that the optimum sample has (80:20) wt. % of mixing ratio of (epoxy: polyester) wt. % for using as matrix materials. Moreover, the adding of nanoclay (Kaolinite) with ratio (7.5 wt.%) leads to the highest sound insulation. The sound intensity started at (99.8) db at 100 Hz, and reached to (101.3) db at 10000 Hz., which is much lower than the values obtained from the un-reinforced blend, of which the sound intensity started at (107.2) db and reached to (108.7) db., at the same range of frequencies. Thermal conductivity results show that the optimum matrix with (7.5 %) wt. % has the lowest value about (0.443 k.w\m .c).

        The results show that the blend reinforced with nano clay in a weight fraction (7.5)% has the best sound insulation, so that the sound intensity started at (99.8) db at 100 Hz., and reached (101.3) db at 10000 Hz., which is much lower than the values obtained from the unreinforced blend, of which the sound intensity started at (107.2) db and reached (108.7) db., applying the same range of frequencies. The same casting (blend+7.5% nanoclay) showed the lowest value of thermal conductivity (xxxx) W.m°C in comparison with castings that were made of unreinforced blend and those  hybridized with rockwool.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
Thermal Buckling of Angle-Ply Laminated Plates Using New Displacement Function
...Show More Authors

ABSTRACT

Critical buckling temperature of angle-ply laminated plate is developed using a higher-order displacement field. This displacement field used by Mantari et al based on a constant ‘‘m’’, which is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of motion based on higher-order theory angle ply plates are derived through Hamilton, s principle, and solved using Navier-type solution to obtain critical buckling temperature for simply supported laminated plates. Changing (α2/ α1) ratios, number of layers, aspect ratios, E1/E2 ratios for thick and thin plates and their effect on thermal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Journal Of Engineering
Assessment of Thermal Pollution at Selected Stretch of Tigris River in Baghdad by Field Observations and Numerical Simulations
...Show More Authors

Although many technological improvements are occurring in power production worldwide, power plants in third world countries are still using old technologies that are causing thermal pollution to the water bodies. Power facilities that dump hot water into water bodies are damaging aquatic life. In the study, the impact of the Al Dora thermal power plant on a nearby stretch of Tigris River in Baghdad city was assessed by measuring the temperature of the disposed of hot water in various cross-sections of the selected stretch of Tigris River, including measuring the thermal mixing length. The measurements were conducted in winter, spring, and summer. For field measurements, it was found that the impact of recovery distances

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Simulation of the Thermal Performance of a Tubular Solar Air Heater
...Show More Authors

In this work, a flat-plate solar air heater (FSAH) and a tubular solar air heater (TSAH) were designed and tested numerically. The work investigates the effect of increasing the contact area between the flowing air and the absorber surface of each heater and predicts the expected results before the fabrication of the experimental rig. Three-dimensional two models were designed and simulated by the ANSYS-FLUENT 16 Program. The solar irradiation and ambient air temperature were measured experimentally on December 1st 2022, at the weather conditions of Baghdad City- Iraq, at three air mass flow rates, 0.012 kg/s, 0.032 kg/s, and 0.052 kg/s. The numerical results showed the advantage in the thermal performance of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 29 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using Quality and Accreditation standard in performance improvement of education institutions: بحث تطبيقي في كلية الهندسة جامعة بغداد
...Show More Authors

enjoyed the process of the development of higher education institutions attention of most countries of the world and to reconsider its objectives and programs and administrative and organizational structures, and it was the most important development of the application of Quality Assurance and Accreditation Standards (QAAS) tools, as the aim of these tools to the application of advanced with a far-reaching impact on all of the disciplines in the organization methods education that contribute, and plays a performance audit an important role in verifying the extent to which carried out these institutions activities or programs effectively and efficiently, economic, There are a number of objectives for the search of the most important attem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of SiC particles and water absorption on thermal conductivity of epoxy reinforcement by (bi-directional) glass fiber
...Show More Authors

In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetic Mechanism on Thermal Degradation of a Nitrate Ester Propellant
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Influence of non-thermal argon plasma needle on blood coagulation
...Show More Authors

Non-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Optical Characteristics of CdSSe Films Prepared by Thermal Evaporation Technique
...Show More Authors

Thin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Investigation of Thermal Stress Distribution in Laser Spot Welding Process
...Show More Authors

The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses  and dimensions of the laser w

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Power Generation from Utilizing Thermal Energy of Hazardous Waste Incinerators
...Show More Authors

A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system gen

... Show More
View Publication Preview PDF
Crossref (2)
Crossref