Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discriminate the polarity of sentiments. This paper proposes a hybrid method of linguistic and statistical features along with classification methods for Arabic sentiment analysis. Linguistic features contains stemming and POS tagging, while statistical contains the TF-IDF. A benchmark dataset of Arabic tweets have been used in the experiments. In addition, three classifiers have been utilized including SVM, KNN and ME. Results showed that SVM has outperformed the other classifiers by obtaining an f-score of 72.15%. This indicates the usefulness of using SVM with the proposed hybrid features.
It is not often easy to identify a certain group of words as a lexical bundle, since the same set of words can be, in different situations, recognized as idiom, a collocation, a lexical phrase or a lexical bundle. That is, there are many cases where the overlap among the four types is plausible. Thus, it is important to extract the most identifiable and distinguishable characteristics with which a certain group of words, under certain conditions, can be recognized as a lexical bundle, and this is the task of this paper.
This research includes the using of statistical to improve the quality of can plastics which is produced at the state company for Vegetable oils (Almaamon factory ) by using the percentage defective control chart ( p-chart ) of a fixed sample. A sample of size (450) cans daily for (30) days was selected to determine the rejected product . Operations research with a (win QSB ) package for ( p-chart ) was used to determine test quality level required for product specification to justify that the process that is statistically controlled.
The results show high degree of accuracy by using the program and the mathematical operations (primary and secondary ) which used to draw the control limits charts and to reject the statistically uncontr
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreRecently, women's rape has been a pervasive problem in the Iraqi society. Thus, it has become necessary to consider the role of language and its influence on the common beliefs and opinions about rape in the Iraqi society. Thus, taking into consideration the critical role of language and its impact on the perception of human reality and the social development based on people's beliefs and principles of life has become highly indispensable. Therefore. The aim of this article is to address this problem critically from legislation and social norms in NGOs' reports (2015; 2019) with reference to some provisions from the Iraqi Panel Code (1969; 2010). Therefore, the researchers examine the discursive strategies and ideological viewpoints in t
... Show MoreContext has a great value in determining meanings and understanding speech as well as it has a significant impact on interpretation of the sacred text (Holy Quran) since it needs to be carefully understood by knowing the different circumstances
In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show More