The erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing the hematocrit, (10%, 15%, 20%, and 25%) had significantly decreased the rate of rouleaux formation (P< 0.005) but increase in the rate of one and three dimensional aggregate formation. On the other hand the sedimentation rate is decreased significantly (P<0.05) with the increase in the PCV value. It was shown that changing the hematocrit have different effects on aggregation process and sedimentation.
Shear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreIn this paper, a Bayesian analysis is made to estimate the Reliability of two stress-strength model systems. First: the reliability of a one component strengths X under stress Y. Second, reliability of one component strength under three stresses. Where X and Y are independent generalized exponential-Poison random variables with parameters (α,λ,θ) and (β,λ,θ) . The analysis is concerned with and based on doubly type II censored samples using gamma prior under four different loss functions, namely quadratic loss function, weighted loss functions, linear and non-linear exponential loss function. The estimators are compared by mean squared error criteria due to a simulation study. We also find that the mean square error is
... Show MoreThe objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
Loss of drilling fluid in the Nasiriyah oil field can be considered as a big,
serious, and expensive problem at the same time, therefore accurate and integrated
program must be prepared before start drilling in layers that are likely to get loss
circulation. From the available data of well Ns-13, the area of loss was detected in
five layers, which are Dammam, Um- radoma, Tayarat, Shiranish and Hartha since
these layers contain natural cracks and high porosity represented by vugs.
Methods of prevention have been identified by specifying the minimum values
of drilling parameters to reduce hydrostatic pressure, thus reducing equivalent
density of drilling mud during the circulation, depths of casing shoes is
deter
Background subtraction is the dominant approach in the domain of moving object detection. Lots of research has been done to design or improve background subtraction models. However, there are a few well-known and state-of-the-art models that can be applied as a benchmark. Generally, these models are applied to different dataset benchmarks. Most of the time, choosing an appropriate dataset is challenging due to the lack of dataset availability and the tedious process of creating ground-truth frames for the sake of quantitative evaluation. Therefore, in this article, we collected local video scenes of a street and river taken by a stationary camera, focusing on dynamic background challenges. We presented a new technique for creati
... Show MoreThe impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show More