The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.
Alloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreLow-dimensional materials have attracted significant attention in developing and enhancing the performance of quantum well lasers due to their extraordinary unique properties. The optical confinement factor is one of the most effective parameters for evaluating the optimal performance of a semiconductor laser diode when used to measure the optical gain and current threshold. The optical confinement factor and the radiative recombination of single quantum wells (SQW) and multi-quantum wells (MQW) for InGaAsP/InP have been theoretically studied using both radiative and Auger coefficients. Quantum well width, barrier width, and number of quantum wells were all looked at to see how these things changed the optical confinement factor and
... Show MoreThe work in this paper focuses on the system quality of direct and coherent communication system for two computers. A system quality is represented by Signal to Noise ratio (SNR) and Bit Error Rate (BER). First part of the work includes implementation of direct optical fiber communication system and measure the system quality .The second part of the work include implementation both the( homodyne and heterodyne)coherent optical fiber communication system and measure the system quality . Laser diode 1310 nm wavelength with its drive circuit used in the transmitter circuit . A single mode of 62.11 km optical fiber is selected as transmission medium . A PIN photo detector is used in the receiver circuit. The optical D-coupler was u
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreIn the present work, pulsed laser deposition (PLD) technique was applied to a pellet of Chromium Oxide (99.999% pure) with 2.5 cm diameter and 3 mm thickness at a pressure of 5 Tons using a Hydraulic piston. The films were deposited using Nd: YAG laser λ= (4664) nm at 600 mJ and 400 number of shot on a glass substrate, The thickness of the film was (107 nm). Structural and morphological analysis showed that the films started to crystallize at annealing temperature greater than 400 oC. Absorbance and transmittance spectra were recorded in the wavelength range (300-
4400) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of d
Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM) and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical
... Show MoreTransparent nano- coating was prepared by Sol-Gel method from titanium dioxide TiO2 which has the ability to self-cleaning coating used for hospitals, laboratories, and places requiring permanent sterilization. Three primary colors are selected (red, blue, and yellow) as preliminary study to the effect of these colors on the nano-coating. Three traditional oil paints color were used as base, then coated by a layer of TiO2-Sol and deposited on the paints. The optical properties of TiO2-Sol were measured; the maximum absorption wavelength at (λmax=387 nm), the refractive index (n=1.4423) and the energy band gap (Eg=3.2 eV). The structure properties found by X-ray diffraction of TiO
The Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals th
... Show MoreThis work represents implementation and investigation of optical coherent communication system between two computers. A single mode optical fiber is selected as transmission medium. The data are sent via the RS-232 standard interface with a bit rate of 9.6 kbps from personal computer (PC1) by line receive to convert the data from electrical levels (-12/+12 V) into TTL level (0/5 V). The modulation of this data was accomplished by internal modulation using laser diode type (HFCT-5208M) 1310 nm wavelength. The optical D-coupler was used to combine the optical signal that come from laser source with optical signal of laser local oscillator (OTS-304XI) at 1310/1550 nm wavelength to obtain coherent (homodyne and heterodyne) detection respective
... Show MoreNanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.
... Show More