Glassy polymers like Poly Mathyel Metha Acrylate are usually classified as non-porous materials; they are almost considered as fully transparent. Thin samples of these materials reflect color changing followed by porous formation and consequently cracking when exposed to certain level of ?-irradiation. The more the dose is the higher the effect have been observed. The optical microscope and UV-VIS spectroscopy have clearly approved these consequences especially for doped polymers.
TiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio
Effects of Ozonated Water on Micro Leakage between Enamel and Fissure Sealants Prepared by Different Etching Technique (An in vitro Study), Baraa M Jabar*, Muna S Khalaf
Background: Klebsiella pneumoniae were considered as normal flora of skin, and intestine. It can cause damage to human lungs; the danger of this bacterium is related to exposure to the hospital surroundings. materials and methods: the detection of Klebsiella pneumoniae on morphological and biochemical tests and then assured with VITEK 2 system. Resistance to antibiotics was determined by Kirby-Baeur method. And genotyping of IMP-1 in isolates was done by PCR technique, then biofilm formation was identified by Micro titer plate method. Results: The present study included a collecting of 50 specimens from different clinical specimens, (blood 40%, urine 30%, sputum 20%, wound infection 10%); 10 isolates were identified as K
... Show MoreAPDBN Rashid, The College of Arts/ Al-Mustansiriyya University, 2004
This study deals with establishing the depositional environment of the Fatha Formation through facies analysis. It also deals with dividing the formation into units based on the rhythmic nature. Data from selected shallow wells near Hit area and deep wells at East Baghdad Oil field are used. Five major lithofacies are recognized in this study, namely, greenish grey marl, limestone, gypsum (and/or anhydrite), halite and reddish brown mudstone (with occasional sandstone).The limestone lithofacies is divided into three microfacies: Gastropods bioclastic wackestone microfacies, Gastropods peloidal bioclastic packstone, and Foraminiferal packstone microfacies.The lithofacies of the Fatha are nested in a rhythmic pattern or what is known as sh
... Show MoreThe Aaliji Formation in wells (BH.52, BH.90, BH.138, and BH.188) in Bai Hassan Oil Field in Low Folded Zone northern Iraq has been studied to recognize the palaeoenvironment and sequence stratigraphic development. The formation is bounded unconformably with the underlain Shiranish Formation and the overlain Jaddala Formation. The microfacies analysis and the nature of accumulation of both planktonic and benthonic foraminifera indicate the two microfacies associations; where the first one represents deep shelf environment, which is responsible for the deposition of the Planktonic Foraminiferal Lime Wackestone Microfacies and Planktonic Foraminiferal Lime Packstone Microfacies, while the second association represents the deep-sea environme
... Show MoreSteady natural convection in a square enclosure with wall length (L= 20 cm) partially filled by saturated porous medium with same fluid (lower layer) and air (upper layer) is investigated. The conceptual study of the achievements of the heat transfer is performed under effects of bottom heating by constant heat flux (q=150,300,450,600W/m2 ) for three heaters size (0.2,0.14,0.07)m with symmetrically cooling with constant temperature on two vertical walls and adiabatic top wall. The relevant filled studied parameters are four different porous medium heights (Hp=0.25L,0.5L, 0.75L, L), Darcey number (Da1) 3.025×10-8 and (Da2) 8.852×10-4 ) and Rayleigh number range (60.354 - 241.41), (1.304×106 – 5.2166×106 ) for Da1 and Da2 cases respecti
... Show MoreMixed convection heat transfer in a vertical concentric annulus packed with a metallic porous media and heated at a constant heat flux is experimentally investigated with water as the working fluid. A series of experiments have been carried out with a Rayleigh number range from Ra=122418.92 to 372579.31 and Reynolds number that based on the particles diameter of Red=14.62, 19.48 and 24.36. Under steady state condition, the measured data were collected and analyzed. Results show that the wall surface temperatures are affected by the imposed heat flux variation and Reynolds number variation. The variation of the local heat transfer coefficient and the mean Nusselt number are presented and analyzed. An empirical
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of
... Show More