In this paper we proposes the philosophy of the Darwinian selection as synthesis method called Genetic algorithm ( GA ), and include new merit function with simple form then its uses in other works for designing one of the kinds of multilayer optical filters called high reflection mirror. Here we intend to investigate solutions for many practical problems. This work appears designed high reflection mirror that have good performance with reduction the number of layers, which can enable one to controlling the errors effect of the thickness layers on the final product, where in this work we can yield such a solution in a very shorter time by controlling the length of the chromosome and optimal genetic operators . Result shows that the construction of multilayer high reflection mirror using in this approach can be considered as a master stone for design another type of filters with most complicated performance, and it is difficult designing in other approach The experiment results demonstrate that our approach is a powerful technique. It is enable to locate the global optimum optimal automatically with high confidence without need for a good starting design.
The process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreThe goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b
In this paper, a mathematical model was built for the supply chain to reduce production, inventory, and transportation in Baghdad Company for Soft Drink. The linear programming method was used to solve this mathematical model. We reduced the cost of production by reduced the daily work hours, the company do not need the overtime hours to work at the same levels of production, and the costs of storage in the company's warehouses and agents' stores have been reduced by making use of the stock correctly, which guarantees reducing costs and preserving products from damage. The units transferred from the company were equal to the units demanded by the agents. The company's mathematical model also achieved profits by (84,663,769) by re
... Show MoreIn this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
In this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
A numerical method is developed for calculation of the wake geometry and aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady motion in an inviscid incompressible flow (panel method). The method is applied to sudden change in airfoil incidence angle and airfoil oscillations at high reduced frequency. The effect of non-linear wake on the unsteady aerodynamic properties and oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The results of the present method shows good accuracy as compared with flat plate and for unsteady motion with heaving and pitching oscillation the present method also shows good trend with the experimental results taken from published data. The method shows good result
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.