A numerical investigation has been performed to examine the effect of fluorine concentration on the chain reaction mechanisms and parameters of hydrogen fluoride (HF) chemical laser. The practical difficulties associated with this type of lasers impose that an alternative route might be quite useful. Thus, particular attention was paid to develop a computer program to investigate various processes. The results of this computer simulation program proved their credibility when compared with the little published data. This computer program is called Reaction Rate Simulation Model (RRSM). An entirely new approach to emulate the reaction mechanisms has been followed. The effectiveness of reaction rates in the processes of HF laser production has been investigated. This simulation program dealt with the percentages of the forward and reverse reactions, when a large number of reactions have been considered. In addition a large number of species have been taken into account in these reactions. From the computer program (RRSM), some valuable results could be predicted with regard to the hydrogen fluoride chemical laser.
In this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreAbstract: Objectives: To investigate the effect of temperature elevation on the bonding strength of resin cement to the zirconia ceramic using fractional CO2 laser. Background: Fractional CO2 laser is an effective surface treatment of zirconia ceramic, as it increases the bonding strength of zirconia to resin cement. Methods: Thirty sintered zirconia discs (10 mm diameter, 2 mm thickness) were prepared and divided to three groups (N=10) and five diffident pulse durations were used in each group (0.1, 0.5, 1, 5 and 10 ms). Group A was treated with 10 W power setting, group B with 20 W and group C with 30 W. During laser irradiation, temperature elevation measurement was recorded for each specimen. Luting cement was bonded to the treated z
... Show MoreThe present work includes a design and characteristics study of a controlling the wavelength of high power diode laser by thermoelectric cooler [TEC] . The work includes the operation of the [TEC] to control the temperature of the diode laser between ( 0- +30) °C by changing the resistance of thermistor. We can control a limited temperature of a diode laser by changing the phase cooling between hot and cold faces of the diode, this process can be attempted by comparator type [LM –311] .The theoretical results give a model for controlling the temperature with, the suitable wavelength.
The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show MoreThe current research is a spectroscopic study of Coumarin 334 dissolved in methanol. The range of concentrations of the prepared stock solution was (3.39x10-9 to 2.03x10-8) M. Some optical characteristics of this dye were investigated such as absorbance and transmission spectra, absorption coefficient, refractive and extinction coefficients, oscillation and dispersion energies, and energy band gap. The absorbance spectra were recorded at 452 nm using Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) which depends on increasing the path length of the traveling light from the source to the detector. The minimum absorbance amount was 0.07 with a low concentration of 3.39x10-9 M. As a result, the ot
... Show More
Find interested in the harmonization of variables and determinants of supply chain planning needs of the material, leading to the results start effective supply chain management, and end up quickly modify the sizes to suit the demand and turnover in the market. As well as identifying relationships between variables, and type of relationship used by the company with the processors and their feasibility, and indicate the level of interest and willingness to redesign the supply chain Company for Electrical Industries and build an integrated model for supply chain with the MRP system can be applied in the company.
Research depend on quantitative and descriptive method, It
... Show MoreA theoretical study including the effects of the fusion characteristics parameters on the fundamental fusion rate for the BEC state in D-D fusion reaction is deal with varieties physical parameters such as the fuels density, fuel temperature and the astrophysics S-factor are processed to bring an approximately a comparable results to agree with the others previously studies.
the behavior of the first-order black and gray solitons propagtedin optical fiber in the presence of frequency chirp is studied analytically and numerically results show that phase profile of black solitons changes abruptly