Liquid membrane electrodes for the determination iron(III) were constructed based on chloramphenicol sodium succinate and iron(III) CPSS-Fe(III) as ion pair complex, with four plasticizers Di-butyl phosphate (DBP); Di-butyl phthalate (DBPH); Di-octyl phthalate (DOP); Tri-butyl phosphate (TBP); in PVC matrix . These electrodes give Nernstian and sub-Nernstian slopes (19.79, 24.60, 16.01 and 13.82mV/decade) and linear ranges from (1x10-5-1x10-2 M, 1x10-5-1x10-2 M, 1x10-6-1x10-2 M and 1x10-5-1x10-2 M) respectively. The best electrode was based on DBP plasticizer which gave a slope 19.79 mV/decade, correlation coefficient 0.9999, detection limit of 9×10-6 M, lifetime 37 day displayed good stability and reproducibility and used to determine iron(III) in pharmaceutical samples. The selectivity coefficient interferences of (K+, Na+, Cu+2, Mn+2, Zn2+, Al3+,Folic acid) were studied using separate and mixed methods for selectivity coefficient determination. The pH and life time of the electrodes were also studied.
Steganography is defined as hiding confidential information in some other chosen media without leaving any clear evidence of changing the media's features. Most traditional hiding methods hide the message directly in the covered media like (text, image, audio, and video). Some hiding techniques leave a negative effect on the cover image, so sometimes the change in the carrier medium can be detected by human and machine. The purpose of suggesting hiding information is to make this change undetectable. The current research focuses on using complex method to prevent the detection of hiding information by human and machine based on spiral search method, the Structural Similarity Index Metrics measures are used to get the accuracy and quality
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More
It is considered as one of the statistical methods used to describe and estimate the relationship between randomness (Y) and explanatory variables (X). The second is the homogeneity of the variance, in which the dependent variable is a binary response takes two values (One when a specific event occurred and zero when that event did not happen) such as (injured and uninjured, married and unmarried) and that a large number of explanatory variables led to the emergence of the problem of linear multiplicity that makes the estimates inaccurate, and the method of greatest possibility and the method of declination of the letter was used in estimating A double-response logistic regression model by adopting the Jackna
... Show MoreThe process of selection assure the objective of receiving for chosen ones to high levels more than other ways , and the problem of this research came by these inquires (what is the variables of limits we must considered when first preliminaries selections for mini basket ? and what is the proper test that suits this category ? and is there any standards references it can be depend on it ?) also the aims of this research that knowing the limits variables to basketball mini and their tests as a indicators for preliminaries for mini basketball category in ages (9-12) years and specifies standards (modified standards degrees in following method) to tests results to some limits variables for research sample. Also the researchers depends on (16)
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More