In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results showed had been tabulated and graphically represented as functions of their variables. These results a satisfactory agreement between experimental values and theoretical data given in the literature showed.
Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreThe Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without
... Show Moreلخلاصة Nuclear energy is among the most important discoveries reached by the human terms contributed to the solution of many problems faced by the states. The last of these that are not only utilizing it in a peaceful area, but tended toward the military field and the nuclear weapons industry , Among these countries, we find North Korea, which has openly declared their manufacture of nuclear weapons and thus entry to the club of nuclear countries. International Atomic Energy Agency has worked to resolve the North Korea standoff but has not been able to achieve positive results, prompting the intervention of European countries in order to end the crisis. تعدُّ الطاقة النووية من بين أهم الاستكشافا
... Show MoreAbstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreThe present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreThis study aimed to evaluate the occurrence of microbial contamination in food keeping freezers in some local markets in Baghdad city/ Iraq, as well as the contamination of the hands of workers in markets, and the possibility of contamination caused by the transport of food. 30 samples of snow ice found in food keeping freezers in local markets was randomly collected, and 30 swabs from workers hands were taken from the same markets at the same time. Microbiological examination of ice samples was conducted as well as the hands of workers’swabs, and the bacteria were isolated and diagnosed through microbiological and biochemical tests followed. Microbial test results showed some isolates of bacteria in ice samples obtained from food keep
... Show MoreThe aim of this study is to investigate the existence of some heavy metals (lead, cadmium, chromium) in colored plastic table dishes and study the migration of these metals to the food meals and the affecting factors in migration , such as storage period and food temperature. Six kinds of colored plastic table dishes were collected from Baghdad markets. The heavy metals in table dishes and in the prepared food meals put in them were estimated using atomic absorption spectrophotometer (Shimadzu A5000). The results indicated the existence of lead in all samples (1.61_1.00 mg/ kg) and chromium in three samples (0.85_0.97 mg/ kg) while other samples are free of chromium, and cadmium. Investigating the migration of these metals to food at dif
... Show MoreThe cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show More