The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was transformed using transform domains Discrete Wavelet Transform(DWT) in order to obtain the system features .At the last stage the approximation coefficients result from the Discrete Wavelet Transform were fed to the Artificial Neural Networks and to the Fuzzy Logic, then compared between two results to obtain the best for classifying fetal heart rate.
Adolescent pregnancy is common health problem still found in both developed and developing countries; as adolescent may have early sexual practice or early marriage. Adolescent mothers face substantially higher maternal and perinatal morbidity and mortality than adult women. This is a randomized prospective clinical study conducted at Al-Elwiya Maternity Teaching Hospital, Baghdad, Iraq. The objective of this work is to assess the adverse maternal, fetal and neonatal outcomes in early and late teenage pregnant mothers. Study sample consisted of 220 primigravid women with a singleton, cephalic, viable fetus and no congenital abnormality that gave birth at Al-Elwiya Maternity Teaching Hospital, Baghdad, Iraq. The 1stgroup: early teenage (46 w
... Show MoreAbstract Background Hemoglobin A1c (HbA1c) is a widely used test for glycemic control. It is done for chronic kidney disease (CKD) patients. Renal disease is accompanied by thyroid abnormalities, which affect HbA1c, especially in those taking erythropoiesis-stimulating agents (ESAs). We aimed to find the effect of thyroid dysfunction on HbA1c in hemodialysis patients taking ESAs and those who do not. Materials and Method Fifty six patients were included in this study, which was done between September 2017 and June 2018, in Baghdad Teaching Hospital. Thyroid stimulating hormone, free T3, free T4 and HbA1c measurements were done. The patients were divided into 2 groups; those who took ESAs and those who did not, then they were subdivided into
... Show MoreBackground: Hemoglobin A1c (HbA1c) is a widely used test for glycemic control. It is done for chronic kidney disease (CKD) patients. Renal disease is accompanied by thyroid abnormalities, which affect HbA1c, especially in those taking erythropoiesis-stimulating agents (ESAs). We aimed to find the effect of thyroid dysfunction on HbA1c in hemodialysis patients taking ESAs and those who do not. Materials and Method: Fifty six patients were included in this study, which was done between September 2017 and June 2018, in Baghdad Teaching Hospital. Thyroid stimulating hormone, free T3, free T4 and HbA1c measurements were done. The patients were divided into 2 groups; those who took ESAs and those who did not, then they were subdivided into those
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More