Preferred Language
Articles
/
bsj-2679
Classification of fetal abnormalities based on CTG signal

The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was transformed using transform domains Discrete Wavelet Transform(DWT) in order to obtain the system features .At the last stage the approximation coefficients result from the Discrete Wavelet Transform were fed to the Artificial Neural Networks and to the Fuzzy Logic, then compared between two results to obtain the best for classifying fetal heart rate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Iraqi Journal Of Information & Communications Technology
Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms

Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope

... Show More
Crossref (14)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 03 2015
Journal Name
Iraqi Journal Of Science
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Scopus (14)
Crossref (5)
Scopus Crossref
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Scientific Research In Knowledge
The Impact of Teenage Pregnancy on Maternal, Fetal and Neonatal Outcomes

Adolescent pregnancy is common health problem still found in both developed and developing countries; as adolescent may have early sexual practice or early marriage. Adolescent mothers face substantially higher maternal and perinatal morbidity and mortality than adult women. This is a randomized prospective clinical study conducted at Al-Elwiya Maternity Teaching Hospital, Baghdad, Iraq. The objective of this work is to assess the adverse maternal, fetal and neonatal outcomes in early and late teenage pregnant mothers. Study sample consisted of 220 primigravid women with a singleton, cephalic, viable fetus and no congenital abnormality that gave birth at Al-Elwiya Maternity Teaching Hospital, Baghdad, Iraq. The 1stgroup: early teenage (46 w

... Show More
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Proposed Handwriting Arabic Words classification Based On Discrete Wavelet Transform and Support Vector Machine

A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.

View Publication Preview PDF
Publication Date
Wed Dec 05 2018
Journal Name
Italian Journal Of Gynaecology & Obstetrics
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Benchmarking Framework for COVID-19 Classification Machine Learning Method Based on Fuzzy Decision by Opinion Score Method

     Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, has been announced as a global pandemic by the World Health Organization (WHO), which results in the collapsing of the healthcare systems in several countries around the globe. Machine learning (ML) methods are one of the most utilized approaches in artificial intelligence (AI) to classify COVID-19 images. However, there are many machine-learning methods used to classify COVID-19. The question is: which machine learning method is best over multi-criteria evaluation? Therefore, this research presents benchmarking of COVID-19 machine learning methods, which is recognized as a multi-criteria decision-making (MCDM) problem. In the recent century, the trend of developing

... Show More
Scopus (9)
Crossref (7)
Scopus Crossref
View Publication Preview PDF