The fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was transformed using transform domains Discrete Wavelet Transform(DWT) in order to obtain the system features .At the last stage the approximation coefficients result from the Discrete Wavelet Transform were fed to the Artificial Neural Networks and to the Fuzzy Logic, then compared between two results to obtain the best for classifying fetal heart rate.
Background: Fetal macrosomia represent a
continuing challenge in obstetrics and increasing in
it's occurrence as well as it is associated with maternal
and perinatal complications.
Objective : To determine the maternal and perinatal
outcome related to fetal macrosomia.
Design: A prospective case control study.
Patients and methods) :10th March-31st May, 2006
A prospective case control study had done over the
period from 10th March to 31st May, 2006 in Al-Batool
maternity teaching hospital in Mosul city .The study
group consisted from 633 singleton alive newborns
with gestational age ≥37weeks weighing 4000 grams
and heavier and mothers of these newborns compared
with control group which consiste
Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD a
... Show MoreTexture recognition is used in various pattern recognition applications and texture classification that possess a characteristic appearance. This research paper aims to provide an improved scheme to provide enhanced classification decisions and to decrease processing time significantly. This research studied the discriminating characteristics of textures by extracting them from various texture images using discrete Haar transform (DHT) and discrete Fourier transform DFT. Two sets of features are proposed; the first set was extracted using the traditional DFT, while the second used DHT. The features from the Fourier domain are calculated using the radial distribution of spectra, while for those extracted from Haar Wavelet the statistical
... Show More<span lang="EN-US">The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of e
... Show MoreBackground: Odontogenic tumors are a diverse group of lesions with a variety of clinical behavior and histopathologic subtypes, from hamartomatous and benign to malignant. The study aimed to examine the clinical and pathological features of odontogenic tumors in Baghdad over the last 11 years (2011–2021). Materials and Methods: The present retrospective study analyzed all formalin-fixed, paraffin-embedded tissue blocks of patients diagnosed with an odontogenic tumor that were retrieved from archives at a teaching hospital/College of Dentistry in Baghdad University, Iraq, between 2011 and 2021. The diagnosis of each case was confirmed by examining the hematoxylin and eosin stained sections by two expert pathologists. Data from pati
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show More