Preferred Language
Articles
/
bsj-2672
Fabrication of multi-junction solar cells

Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Synthesis and characterization of metastable phases of SnO and Sn3O4 thin films for solar cells applications
Abstract<p>Meta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1, </p> ... Show More
Scopus (16)
Crossref (12)
Scopus Crossref
View Publication
Publication Date
Thu Jul 16 2020
Journal Name
Polymer Bulletin
Crossref (25)
Crossref
View Publication
Publication Date
Wed Feb 02 2022
Journal Name
Iraqi Journal Of Science
Effect of Solvent type and Annealing Temperature on Efficiency for Eosin -y Dye Sensitized Solar Cells

Dye-sensitized solar cell (DSSC) is one of the photochemical electric cells, which consists of the photoelectrode, the dye, the electrolyte, and the counter electrode. The advantage of DSSC is the low cost of the solar energy conversion into electricity because of inexpensive materials and the relative ease of the fabrication processes. In this study was selected solvent dye resolve to know most efficient in terms of conversion efficiency. A dye solution of water or ethanol and maxing in which eosin – y dissolves behaves like a colloid and explores the effect of sintering temperature of TiO2 films on the efficiency of dye sensitized solar cells. A study conducted on several samples at different temperatures. Exemplary efficiency of the

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
A theoretical Design of a cover for lowering the solar cells temperature and enhance their performance

In this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs

Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2012
Journal Name
Advances In Materials Physics And Chemistry
The Effect of Zn Concentration on the Optical Properties of Cd10–xZnxS Films for Solar Cells Applications

ABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3

... Show More
Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Jordan Journal Of Mechanical And Industrial Engineering
Empact of Discrete Multi-arc Rib Roughness on the Effective Efficiency of a Solar Air Heater

Artificial roughness on the absorber plate of a Solar Air Heater (SAH) is a popular technique for increasing its effective efficiency. The study investigated the effect of geometrical parameters of discrete multi-arc ribs (DMAR) installed below the SAH absorber plate on the effective efficiency. The effects of major roughness factors, such as number of gaps (Ng = 1-4), rib pitch (p/e = 4-16), rib height (e/D = 0.018-0.045), gab width (wg/e = 0.5-2), angle of attack ( = 30-75), and Reynolds number (Re= 2000-20000) on the performance of a SAH are studied. The performance of the SAH is evaluated using a top-down iterative technique. The results show that as Re rises, SAH-effective DMAR's efficiency first ascends to a specified value o

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Deposited Cu (In, Ga) Se2 (CIGS) by spin-coating technique as an absorber layer of solar-cells

Cu (In, Ga) Se2 (CIGS) nano ink were synthesized from molecular precursors of CuCl, In Cl3, GaCl3 and Se metal heated to 240 °C for 1 hour in N2-atmosphere to form CIGS nanocrystal ink, Thin films were deposited onto Au/soda-lime glass (SLG) substrates. This work focused on CIGS nanocrystals, including their synthesis and application as the active light absorber layer in photovoltaic devices (PVs). This approach, using spin-coating deposition of the CIGS light absorber layers (75 mg/ml and 150 nm thickness), without high temperature selenization, has enabled up to 1.398 % power conversion efficiency under AM 1.5 solar illumination. X-ray diffraction (XRD) studies show that the structural formation of CIGS chalcopyrite structure. The mo

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Nov 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Scopus Crossref
View Publication
Publication Date
Tue Nov 01 2022
Journal Name
Optik
Design new D-π-A materials for sensitizers for dye-sensitized solar cells: Quantum chemical study

Within this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a

... Show More
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Temperature and Doping Dependencies Junction Of Polythiophene Schottky Barrier

 The junction between  polythiophene,  a conducting  polymer formed by  electrochemical polymerization,  and n-type silicon was  studied the temperature and doping dependencies were observed in the junction characteristics. The increase of junction  temperature leads to increase the saturation current, the barrier height, and decrease of the ideality factor for  junction. While the reduction in doping concentration causes a decrease  in the forward current. The results were  explained  according to the conventional  Schottky diode theories. 

View Publication Preview PDF