Citrus fruit contain variety of flavonoids such as Hesperidin (the principal flavonoid in oranges and grapefruit). Hesperidin is found in high concentration in fruit peel of oranges and in substantially lower concentration in juice of these fruits. Hesperidin was extracted from oranges peel by treating the peels with calcium hydroxide. HPLC technique was used to determine hesperidin. Hesperidin was saperated and purified in a purity of about 90.1-95.7% and yield about 1.5 %w/w from oranges peel dry powder. Both hesperidin and oranges peel extract showed significan antibacterial activity. Sensitivity to hesperidin and oranges peel extracts were not similar for the chosen bacteriaCrude orange peel extract gave a various antimicrobial activity agents Gram-positive Bacillus cereus, Staphylococcus aurous, Streptococcus pyogenus sp. and Gram-negative (Escherichia coli, Salmonella typhi) bacteria strains`. The minimum inhibitory concentration (MIC) values against these bacteria ranged from 45-175?g/disc.for crude orange peel extractand 175-450?g/disc for pure hesperidin In comparison to 30?g/disc reference standards ciproflaxacin and impinme.orange peel extract showed significant antimicrobial activity.
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
A computational investigation has been carried out on the design and properties of the electrostatic mirror. In this research, we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The electron beam path under zero magnification condition had been investigated as mirror trajectory with the aid of fourth – order – Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements, i.e. each optical element in optical system has suffer from the chromatic aberration, for this case, it is use to operate the mirror in optical system at various values
... Show MoreIn this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
De-waxing of lubricating oil distillate (400-500 ºC) by using urea was investigated in the present study. Lubricating oil distillate produced by vacuum distillation and refined by furfural extraction was taken from Al-Daura refinery. This oil distillate has a pour point of 34 ºC. Two solvents were used to dilute the oil distillate, these are methyl isobutyl ketone and methylene chloride. The operating conditions of the urea adduct formation with n-paraffins in the presence of methyl isobutyl ketone were studied in details, these are solvent to oil volume ratio within the range of 0 to 2, mixer speed 0 to 2000 rpm, urea to wax weight ratio 0 to 6.3, time of adduction 0 to 71 min and temperature 30-70 ºC). Pour point of de-waxed oil and yi
... Show MoreObjective: To determine the effectiveness of a dietary educational program upon the hypertensive client’s
information.
Methodology: The sample of the study consists of (60) hypertensive clients who attended Al Anbar Health Office –Al
Andalus Health Center during the period of the study from the14th of March 2010 to the 30th of September 2010. The
sample is divided into two groups; study group (30) hypertensive clients who received dietary educational program
and control group (30) hypertensive clients who received a routine care from the center. Three major instruments
were used; these instruments included (1) knowledge test which was applied on both groups pretest and eight weeks
post-test (2) questions to know
The Purpose of this Research show gap between a Normal Cost System and Resource consumption Accounting Applied in AL-Rafidin Bank.
The Research explores that, how the idle capacity can be determined under resource consumption accounting, discuss the possibility of employing these energies. Research also viewed how costs can be separated into Committee and Attribute. Resource Consumption Accounting assists managers in pricing services or products based on what these services or products use from each Source.
This Research has been proven
Asphaltenes are a solubility class described as a component of crude oil with undesired characteristics. In this study, Sharqy Baghdad heavy oil upgrading was achieved utilizing the solvent deasphalting approach as asphaltenes are insoluble in paraffinic solvents; they may be removed from heavy crude oil by adding N-Hexane as a solvent to create deasphalted oil (DAO)of higher quality. This method is known as Solvent De-asphalting (SDA). Different effects have been assessed for the SDA process, such as solvent to oil ratio (4-16/1 ml/g), the extraction temperature (23 ºC) room temperature and (68 ºC) reflux temperature at (0.5 h mixing time with 400 rpm mixing speed). The best solvent deasphalting results were obtained at room temp
... Show More