Preferred Language
Articles
/
bsj-2632
Parallel Computing for Sorting Algorithms
...Show More Authors

The expanding use of multi-processor supercomputers has made a significant impact on the speed and size of many problems. The adaptation of standard Message Passing Interface protocol (MPI) has enabled programmers to write portable and efficient codes across a wide variety of parallel architectures. Sorting is one of the most common operations performed by a computer. Because sorted data are easier to manipulate than randomly ordered data, many algorithms require sorted data. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. In this paper, sequential sorting algorithms, the parallel implementation of many sorting methods in a variety of ways using MPICH.NT.1.2.3 library under C++ programming language and comparisons between the parallel and sequential implementations are presented. Then, these methods are used in the image processing field. It have been built a median filter based on these submitted algorithms. As the parallel platform is unavailable, the time is computed in terms of a number of computations steps and communications steps

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 20 2020
Journal Name
Solid State Technology
Comparative Study for Bi-Clustering Algorithms: Historical and Methodological Notes
...Show More Authors

View Publication
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations
...Show More Authors

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem
...Show More Authors

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Theoretical And Applied Information Technology
Matching Algorithms for Intrusion Detection System based on DNA Encoding
...Show More Authors

Pattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o

... Show More
Scopus (4)
Scopus
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Contemporary Challenges for Cloud Computing Data Governance in Information Centers: An analytical study
...Show More Authors

Purpose – The Cloud computing (CC) and its services have enabled the information centers of organizations to adapt their informatic and technological infrastructure and making it more appropriate to develop flexible information systems in the light of responding to the informational and knowledge needs of their users. In this context, cloud-data governance has become more complex and dynamic, requiring an in-depth understanding of the data management strategy at these centers in terms of: organizational structure and regulations, people, technology, process, roles and responsibilities. Therefore, our paper discusses these dimensions as challenges that facing information centers in according to their data governance and the impa

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Feb 13 2025
Journal Name
Technology In Agronomy
Challenges and innovations in potato harvester design: the role of artificial intelligence in improving crop sorting
...Show More Authors

As population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some

... Show More
View Publication
Crossref
Publication Date
Fri Oct 14 2022
Journal Name
المجلة العراقية لعلوم التربة
REVIEW: USING MACHINE VISION AND DEEP LEARINING IN AUTOMATED SORTING OF LOCAL LEMONS
...Show More Authors

Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.

Publication Date
Wed Jul 13 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Designed Algorithms for Compute the Tenser Product of Representation for the Special Linear Groups
...Show More Authors

The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.

View Publication Preview PDF
Publication Date
Wed Sep 15 2021
Journal Name
2021 International Conference On Computing And Communications Applications And Technologies (i3cat)
Parallel Hybrid String Matching Algorithm Using CUDA API Function
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref