Our aim in this paper is to study the relationships between min-cs modules and some other known generalizations of cs-modules such as ECS-modules, P-extending modules and n-extending modules. Also we introduce and study the relationships between direct sum of mic-cs modules and mc-injectivity.
Salinity of soil or irrigation water is one of the most important obstacle towards crop production and productivity, especially with the increasing scarcity of fresh water in Iraq and the Arab countries. The impact of salinity will be alleviated with the increasing temperature due to global warming. The objectives of this article was to shed some light on traits more related to salinity stress tolerance in oats, and to identify genetic variation of these traits. A split-plot arrangement experiment with RCBD was applied through 2011-2013 on the farm of Dept. of Field Crops/Coll. of Agric./Univ. of Baghdad. The oats cultivars; Hamel, Pimula and Genzania were set in sub-plots, whereas water quality was set in main-plots. Water quality had two
... Show MoreUnderstanding, promoting, and teaching media literacy is an important societal challenge. STEM educators are increasingly looking to incorporate 21st century skills such as media literacy into core subject education. In this paper we investigate how undergraduate Computer Science (CS) students can learn media literacy as a by-product of collaborative video tutorial production. The paper presents a study of 34 third-year CS undergraduates who, as part of their learning, were each asked to produce three video tutorials on Raspberry Pi programming, using a collaborative video production tool for mobile phones (Bootlegger). We provide results of both quantitative and qualitative analysis of the production process and resulting video tutorials,
... Show More
مجلة العلوم الاقتصادية والإدارية المجلد 18 العدد 69 الصفحات 318- 332 |
Let R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreLet L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.
The aim of this paper is to present a weak form of -light functions by using -open set which is -light function, and to offer new concepts of disconnected spaces and totally disconnected spaces. The relation between them have been studied. Also, a new form of -totally disconnected and inversely -totally disconnected function have been defined, some examples and facts was submitted.
Throughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Let R be a commutative ring with unity 1 6= 0, and let M be a unitary left module over R. In this paper we introduce the notion of epiform∗ modules. Various properties of this class of modules are given and some relationships between these modules and other related modules are introduced.