In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
In this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreThis paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreThe problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
Currently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the biped
... Show MoreThe Hopfield network is one of the easiest types, and its architecture is such that each neuron in the network connects to the other, thus called a fully connected neural network. In addition, this type is considered auto-associative memory, because the network returns the pattern immediately upon recognition, this network has many limitations, including memory capacity, discrepancy, orthogonally between patterns, weight symmetry, and local minimum. This paper proposes a new strategy for designing Hopfield based on XOR operation; A new strategy is proposed to solve these limitations by suggesting a new algorithm in the Hopfield network design, this strategy will increase the performance of Hopfield by modifying the architecture of t
... Show MoreObjective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B
... Show MoreThis work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreThe m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.
The numerical resolve nonlinear system of Volterra integral equation of the second kind (NLSVIEK2) has been considered. The exponential function is used as the base function of the collocation method to approximate the resolve of the problem. Arithmetic epitome are performed which have already been solved by weighted residual manner, Taylor manner and block- by- block(2, 3, 5).