In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
This paper proposes a new method to tune a fractional order PID controller. This method utilizes both the analytic and numeric approach to determine the controller parameters. The control design specifications that must be achieved by the control system are gain crossover frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new design specification suggested by this paper. These specifications results in three equations in five unknown variables. Assuming that certain relations exist between two variables and discretizing one of them, a performance index can be evaluated and the optimal controller parameters that minimize this performance index are selected. As a case study, a third order linear time
... Show MoreIn this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreIn this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.
The present work has been characterized by higher order modes in the cavities of the Gyrotron; they are capable of producing RF plasma by developments of it. It uses for fusion systems. We choose the TE31,8 mode in our study. The main problem of gyrotron is the device of the thermal cavity loading. The problem of the thermal loading is solved when any parasitic modes suppress, absence of desired modes; the thermal loading is increased when the high power tube of gyrotron operation is unstable. The mathematical interaction model contains equations that describe the electron motion and the field profiles of the transferred electric modes of the resonator, these are interacting with electrons based
... Show MorePulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MoreThe study deals with the issue of multi-choice linear mathematical programming. The right side of the constraints will be multi-choice. However, the issue of multi-purpose mathematical programming can not be solved directly through linear or nonlinear techniques. The idea is to transform this matter into a normal linear problem and solve it In this research, a simple technique is introduced that enables us to deal with this issue as regular linear programming. The idea is to introduce a number of binary variables And its use to create a linear combination gives one parameter was used multiple. As well as the options of linear programming model to maximize profits to the General Company for Plastic Industries product irrigation sy
... Show More