In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this paper, An application of non-additive measures for re-evaluating the degree of importance of some student failure reasons has been discussed. We apply non-additive fuzzy integral model (Sugeno, Shilkret and Choquet) integrals for some expected factors which effect student examination performance for different students' cases.
This research presents a particular designing strategy for a free form of surfaces, constructed by the lofting design method. The regarded surfaces were created by sliding a B-spline curves (profile curves), in addition to describing an automatic procedure for selective identification of sampling points in reverse engineering applications using Coordinate Measurement Machine. Two models have been implemented from (Ureol material) to represent the different cases of B-spline types to clarify its scope of application. The interior data of the desired surfaces was designed by MATLAB software, which then were transformed to UG-NX9 software for connecting the sections that were designed in MATLAB program and obtaining G-code programs for the
... Show MoreIn this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.
n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.