In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
This Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Neg
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
A mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreThe aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreCorrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreNonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).