In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.
Maintenance of hospital buildings and its management are regarded as an important subject which needs attention because hospital buildings are service institutions which are very important to a society, requiring the search for the best procedure to develop maintenance in hospitals. The research is aimed to determine an equation to estimate the annual maintenance cost for public hospital. To achieve this aim, Al-Sader City Hospital maintenance system in Al-Najaf province has been studied with its main elements through survey of data, records and reports relating to maintenance during the years of the study 2008-2014 and to identify the strengths, weaknesses, opportunities and threat points in the current system through Swat analysi
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.
The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
In this paper, we built a mathematical model for convection and thermal radiation heat transfer of fluid flowing through a vertical channel with porous medium under effects of horizontal magnetic field (MF) at the channel. This model represents a 2-dimensional system of non-linear partial differential equations. Then, we solved this system numerically by finite difference methods using Alternating Direction Implicit (ADI) Scheme in two phases (steady state and unsteady state). Moreover, we found the distribution and behaviour of the heat temperature inside the channel and studied the effects of Brinkman number, Reynolds number, and Boltzmann number on the heat temperature behaviour. We solved the system by buildi
... Show MoreIn this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show MoreIn this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
This paper presents a hybrid metaheuristic algorithm which is Harmony-Scatter Search (HSS). The HSS provides Scatter Search (SS) with random exploration for search space of problem and more of diversity and intensification for promising solutions. The SS and HSS have been tested on Traveling Salesman Problem. A computational experiment with benchmark instances is reported. The results demonstrate that the HSS algorithm produce better performance than original Scatter Search algorithm. The HSS in the value of average fitness is 27.6% comparing with original SS. In other hand the elapsed time of HSS is larger than the original SS by small value. The developed algorithm has been compared with other algorithms for the same problem, and the r
... Show More