Preferred Language
Articles
/
bsj-2621
Using Bernoulli Equation to Solve Burger's Equation

In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Recovery of temporal coefficient for heat equation from non-local overdetermination conditions
Abstract<p>Recovery of time-dependent thermal conductivity has been numerically investigated. The problem of identification in one-dimensional heat equation from Cauchy boundary data and mass/energy specification has been considered. The inverse problem recasted as a nonlinear optimization problem. The regularized least-squares functional is minimised through lsqnonlin routine from MATLAB to retrieve the unknown coefficient. We investigate the stability and accuracy for numerical solution for two examples with various noise level and regularization parameter.</p>
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Delay differential equation of the 2nd order and it's an oscillation yardstick

This study focuses on studying an oscillation of a second-order delay differential equation. Start work, the equation is introduced here with adequate provisions. All the previous is braced by theorems and examplesthat interpret the applicability and the firmness of the acquired provisions

Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Communications In Nonlinear Science And Numerical Simulation
Scopus (19)
Crossref (10)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Gaussian Integer Solutions of the Diophantine Equation x^4+y^4=z^3 for x≠ y

The investigation of determining solutions for the Diophantine equation  over the Gaussian integer ring for the specific case of  is discussed. The discussion includes various preliminary results later used to build the resolvent theory of the Diophantine equation studied. Our findings show the existence of infinitely many solutions. Since the analytical method used here is based on simple algebraic properties, it can be easily generalized to study the behavior and the conditions for the existence of solutions to other Diophantine equations, allowing a deeper understanding, even when no general solution is known.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Mean Square Exponential Stability of Semi-Linear Stochastic Perturbed Differential Equation Via Lyapunov Function Approach

    In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Educational And Psychological Researches
Evaluating Educational Programs in Combating Indecent Behaviors Among University Students Using Structural Equation Modeling (Field study: Northern Border University)

The study aimed to evaluate educational programs efficiency in applying the best educational practices to educate students from the dangers of indecent behaviors, in line with higher education policy and the appropriateness of educational program dimensions to spread awareness among students to not fall into the indecent behaviors clutches. The study adopted the inductive exploratory approach through structural equation modeling and the descriptive analysis of the collected data from randomly selected sample (n=385) from educational academics at Northern Border University in the Saudi Arabia using a specially designed survey tool to meet study purposes to evaluate dimensions of teaching methods, evaluation tools, training courses, course

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Solution to Recover Time-dependent Coefficient and Free Boundary from Nonlocal and Stefan Type Overdetermination Conditions in Heat Equation

This paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via

... Show More
Scopus (10)
Crossref (2)
Scopus Crossref
View Publication Preview PDF