Abstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting point and conductivity, this means that most of the compounds were not affected by this kind of radiation. and stable. Whereas some few complexes have been slightly affected due to breaking of hydrogen bonding. The biological activity of copper salt, ligands and all the complexes have been evaluated by agar plate diffusion techniques against two human pathogenic bacterial strains: Staphylococcus aureus and Enterococcus. Copper acetate was found to have antibacterial activity. The ligand FA also has antibacterial activity against Staphylococcus aureus and Enterococcus, whereas the other ligand BOxH does not have antibacterial activity against Enterococcus. Most of the complexes were found to have antibacterial activity against Staphylococcus aureus and Enterococcus. The activity of the complexes (2,4 and 5) have been evaluated on trace of Impetigo from skin of males and females, the complexes [Cu(BOxH)(FA)(Ac)2] (2) and [Cu(BOx)(FA)(OH)] (4,5); showed significant activity against this pathogen.
Filed experiment was conducted to test the effect of saline water and potassium fertilizers rate on proline and water potential of Pisum sativum L. (Var.Senador Cambados ) leaves . Treatments of the experiment included two levels of water salinity( 2, 7 dSm-1) as a main plot and fertilizer rates as a sub plot. Results indicated that irrigation of plant with saline water 7 dSm-1 and fertilization 150 kg/donum increased proline accumulation and water potential 0.31 mmol/g,-17.00 bar at 9 AM morning and 0.62 mmol/g , -21.00 bar at 3 PM afternoon ,Irrigating plant with a 2 dSm-1 and fertilization 300 kg/donum decreased proline accumulation and water potential of leaves 0.22 mmol/g, -16.00 bar at 9 A
... Show MoreWere analyzed curved optical fates Almarchih absolute colony of the binary type, the Great Palmstqrh using mathematical relationships derived for that and that gave us the results closer to the results of the observed spectral Great Colonial
In this paper investigate the influences of dissolved CO2/H2S gases, crude oil velocity and temperature on the rate of corrosion of crude oil transmission pipelines of Maysan oil fields southern Iraq. The Potentiostatic corrosion test technique was conducted into two types of carbon steel pipeline (materials API 5L X60 and API 5L X80). The computer software ECE electronic corrosion engineer was used to predict the influences of CO2 partial pressure, the composition of crude oil, flow velocity of crude oil and percentage of material elements of carbon steel on the rate of corrosion. As a result, the carbon steel API 5L X80 indicates good and appropriate resistance to corrosion compared to carbon steel API
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
wind load coefficient