A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The duration of these current pulses were found to extend between 0.1?s and 0.3?s depending on the values of the circuit components as well as the spacing of the spark gap electrodes along which the plasma propagates at atmospheric pressure. Over the whole range of experimental conditions, the average nominal impedance values were ranged between (2-10)? depending on the gap and circuit parameters. Typical damage patterns were observed with average diameters of up to 8.3 mm on the high voltage electrode and 10.5 mm on the grounded sphere resulting from accumulative discharges and power dissipation within the gap.
This paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process
Utilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller
... Show MoreThe quality of industrial water from (Babil / 2 batteries factory in Baghdad) was investigated, and evaluated the physical and chemical characteristics of the water discharged from sections ALShahen , final collection sank. The values were represented by pH, electrical conductivity, biological oxygen demand, chemical oxygen demand ,total suspended solid, total dissolved solid, sulfate, chloride and heavy metal. The sample of water collocated by two samples per month for 6 months was taking during the period from Novembers 2013 to May 2014. The results show that industrial waste water factory contains contaminations and has varying value rates the average of PH,EC, TDS, SO4, COD, Pb, Zn, for the final c
... Show MoreRoad traffic accidents (RTAs) are events that suddenly, inadvertently and unexpectedly occur under unforeseen circumstances that involve at least one moving vehicle and result in one or more road users being killed or injured. Unfortunately, Iraqi governorates suffer from higher rates of traffic accident casualties compared with the rates of casualties from terrorist attacks; this situation reveals a serious and growing problem. Road traffic accidents are not easy to eradicate. However, their prevalence can be reduced to the barest minimum via periodic assessments of traffic accident characteristics and the most important aspects for road authorities to consider when designing and evaluating the performance of a road to improve traf
... Show MoreThis research studies the effect regarding two plasma types, plasma jet and plasma-activated water (PAW), on tooth root canal bacteria Enterococcus faecalis. The plasma jet works with argon gas, and it is generated by a power supply that operates at alternating high voltages in the form of a sinusoidal wave with peak-to-peak value of about 12 kV at a frequency of 30 KHz and its power is about 200 watts. This plasma was utilized directly to treat the tooth canal and indirectly by activating the water that was used later for treating the Enterococcus faecalis bacteria that are present in the tooth root. Pure distilled water was treated by plasma jet for one hour at flow rate 1 . Plasma water activated by plasma contains
... Show MoreThe nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
The optimum balance values for different coefficient of spherical aberration (third and fifth degree also focal shift) were studied, the optical system includes different apertures (circle, ellipse, square and triangle) using point spread function (PSF). By using (Marechal) method; the minimum value of mean square of variance in wave front was founded, so we can get the maximum of central intensity according to (Strehl) criterion.
Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions, such as Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill-Turner stability classification. The Pasquill-Turner Method (PTM), which is employed in this study used Observations of wind speed, solar altitude angle and the time of day to classify atmospheric stability with distinguishable indices. As a case study, meteorological data that gathered from European Centre For Medium-Range W
... Show More