Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
This study was aimed to isolate and identify Saccharomyces boulardii from Mangosteen fruits (Garcinia mangostana L.) by traditional and molecular identification methods To get safe and healthy foods probiotics for use, The isolates and two commercial strains were subjected to cultural, morphological and biochemical tests, The colonies of the isolates were spherical, smooth, mucoidal, dull and white to cream colour on SD agar media .The shape of cells was globose to ovoid and sometimes with budding, in a single form or clustered like a beehive. The isolates and two commercial strains were unable to metabolized galactose and lactose , Results shows that all isolates were unable to utilize potassium nitrate and not grow in the presence of (
... Show MoreToday’s world confronts various threats from different sources. Similar to deprivation of energy, economic facilities, or political deposition, educational poisoning is one of the dangerous phenomena that result from distorting and corrupting the ethical and educational components of teaching by various material and non – material means.This paper sheds light on the concept of the educational system which is not a mere process of teaching, but rather an endless process of socialization that begins in the family and develops into religious, ethical, scientific and mythological systems, all of which form the cognitive component. It also defines the necessary means by which it is transmitted from one generation into another. The educati
... Show MoreNumber theorists believe that primes play a central role in Number theory and that solving problems related to primes could lead to the resolution of many other unsolved conjectures, including the prime k-tuples conjecture. This paper aims to demonstrate the existence of this conjecture for admissible k-tuples in a positive proportion. The authors achieved this by refining the methods of “Goldston, Pintz and Yildirim” and “James Maynard” for studying bounded gaps between primes and prime k-tuples. These refinements enabled to overcome the previous limitations and restrictions and to show that for a positive proportion of admissible k-tuples, there is the existence of the prime k-tuples conjecture holding for each “k”. The sig
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThe background subtraction is a leading technique adopted for detecting the moving objects in video surveillance systems. Various background subtraction models have been applied to tackle different challenges in many surveillance environments. In this paper, we propose a model of pixel-based color-histogram and Fuzzy C-means (FCM) to obtain the background model using cosine similarity (CS) to measure the closeness between the current pixel and the background model and eventually determine the background and foreground pixel according to a tuned threshold. The performance of this model is benchmarked on CDnet2014 dynamic scenes dataset using statistical metrics. The results show a better performance against the state-of the art
... Show MoreThe main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MoreRA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati