In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
Indium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
In this work, vanadium pentoxide (V2O5) thin films were prepared using rf magnetron sputtering on silicon wafer and glass substrates from V2O5 target at 200 °C substrate temperature, followed by annealing at 400 and 500 °C in air for 2 h. The prepared thin films were examined by X-ray diffraction (XRD), forier transform infra-red spectroscopy (FTIR), UV-visible absorbance, and direct current coductivity to study the effects of annealing temperature on their structural and optical properties. The XRD analysis exhibited that the annealing promoted the highly crystallized V2O5 phase that is highly orientated along the c direction. The crystalline size increased from 22.5 nm to 35.4 nm with increasing the annealing
... Show MoreIn this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption s
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
Cadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.
The Influence of annealing temperature on the optical properties of (CuInSe2) thin films was studied. Thermal evaporation in vacuum technique has been used for films deposited on glass substrates, these films were annealed in vacuum at (100C°, 200C°) for (2 hours). The optical properties were studied in the range (300-900) nm. The obtained results revealed a reduction in energy band gap with annealing temperature . optical parameters such as reflectance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, skin depth and optical conductivity are investigated before and after annealing. It was found that all these parameters were affected by annealing temperature.
In this research a bilateral tin oxide (SnO2) thin films was prepared by Sol-
Gel method, flow coating technique which is considered a simple and cheap
technique. The horizontal sample preparation with and without the use of
installed, and also with installed to vertical sample. Results of optical
spectroscopy that the biggest values of the transmittance T was for horizontal
films with an installed, as for the absorbance A was the biggest values of the
vertical sample. For the reflectivity R was value in the horizontal films with
installed, less than a horizontal films without Sticky as well as for films
vertical. The results of the energy gap Eg for that direct allowed and forbidden
transitions and for the ind
We studied the changing of structural and optical properties of pure and Aluminum-doped ZnO thin films prepared by thermal evaporation technique on glass substrates at thickness (800±50)nm with changing of annealing temperatures ( 200,250,300 )℃ for one hour. The investigation of (XRD) indicates that the pure and doped ZnO thin films were polycrystalline of a hexagonal wurtzite structure with preferred orientation along (002) plane. The grain size was decreased with doping before annealing, but after annealing the grain size is increasing with the increase of annealing temperature for pure film whereas for the doped films with ratios 1 %, 2 % we found that the grain size is larger than that before annealing. The grain size
... Show More