The aquatic crude extract of Silybum marianum dry grains prepared by melting them in distil water by the method of soak and shake. The effect of Silybum marianum crude extract studied in vitro on three tumor cell line the Hep-2, AMN-3 and RD for 24, 48 and 72 hours of exposure, and one cell line of normal cells REF for 72 hr exposure. The results showed that the prescence of toxic effect of the aquatic crude extract on the cell lines of Hep-2, AMN-3 and RD at 10 and 100 µg/ ml upto the higher concentrations when they exposed to the extract for 48 hr. as compared with the control treatment, and when the exposure period increased to 72 hr. the toxic effect started at low concentrations (5 and 10 µg/ ml) as compared with the control group. Results comparision showed that the AMN-3 cell line was the most affected ane by the aquatic extract then the Hep-2 and RD, while normal REF was never affected. The microscopic test showed toxic effect for the low and high concentration of aquatic extract on the cells which was presented by obrious changes on the cell lines growth and loosing their distingwish cellular form.
Levan is an exopolysaccharide produced by various microorganisms and has a variety of applications. In this research, the aim was to demonstrate the biological activity of levan which produced from B. phenoliresistens KX139300. These were done via study the antioxidant, anti-inflammatory, anticancer and antileishmanial activities in vitro. The antioxidant levan was shown 80.9% activity at 1250 µg/mL concentration. The efficient anti-inflammatory activity of 88% protein inhibition was noticed with levan concentration at 35 µg/mL. The cytotoxic activity of levan at 2500 µg/mL concentration showed a maximum cytotoxic effect on L20B cell line and promastigotes of Leishmani tropica. Levan has dose-dependent anticancer and antileishman
... Show MoreConcrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThis research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.
Consequently, HS
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show More