This study is conducted to investigate the validity of using different levels of Rustumiya sewage water for irrigation and their effects on corn growth and some of the chemical properties of the soil such as electrical conductivity and soil pH in extract soil paste , the micro nutrient content in soil and plant which are ( Fe , Mn , Zn , Cu , Cd , Pb ). Three levels of sewage water ( 0 , 50 , 100 )% in two stages were used ,the three levels of wastewater ( without soil fertilization ) were used in the first stage , Where 80 Kg N /D+50Kg P2O5 /D was added to the soil as fertilizer in the control (0%) treatment and 40 Kg N/D+25Kg P2O5/D were added to 50 and 100% levels in the second stage .Corn seeds were planted in 12kg plastic pots in Completely Randomized Block Design in three replicates . The results show a high significant increase in plant height , fresh and dry weight for all treatments in comparison with control treatment . The low added level of sewagewater in both stages gave a significant increase of plant height and fresh and dry weight . The results showed a high increased of electrical conductivity for 50 , 100% wastewater added levels for both stages compared with control treatment , The high added level 100% gave high significant increase in electrical conductivity compared with the low level of the sewagewater .Whereas the values of soil PHwere close to the neutral for all treatment.The results showed a significant increase in micro nutrients content ( which include Fe , Mn , Zn , Cu , Cd , Pb ) in soil and plant for all treatments compared with control treatment . This increase was continued with the increase of additional level of sewagewater . However all the micro nutrient were within the allowable natural limits and not reached the toxic limits in soil and plant .
The current study aimed to evaluate the effect of the heavy metals copper, cadmium and cobalt when added individually, in combination and in combination on the growth and reproduction of the aquatic fungus Saprolegnia hypogyna.
This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Tillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
The structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.
Flexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreAn experiment was carried out by using post in kalar horticulture Station/Sulaimania province on soil taked from once region sields during growing season of 2008-2009. The objective was to study adding increasing levels of urea fertilizer which is (0.0, 0.20, 0.40, 0.80) gm/Pot and superphosphate fertilizer which is (0.0, 0.24, 0.48) gm/pot in some chemical properties of grain for wheat IPA 95. This experiment was carried out by completely randomized design (CR D) with three replications. Results in dictated of clear increase in all the studied characteristics (concentration for each nitrogen, phosphorus and potassium and carbohydrate percentage with increasing levels of fertilizers).
Sustainable vegetative management plays a significant role in improving soil quality in degraded agricultural landscapes by enhancing soil microbial biomass. This study investigated the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), and agroforestry buffers (ABs) on soil microbial biomass and soil organic C (SOC) compared with continuous corn (