Preferred Language
Articles
/
bsj-2482
St-Polyform Modules and Related Concepts
...Show More Authors

In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Essential Fuzzy Submodules Of Fuzzy Modules
...Show More Authors

        Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of  weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Fully Semiprime Submodules and Fully Semiprime Modules
...Show More Authors

   Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study fully semiprime submodules and fully semiprime modules, where a proper fully invariant R-submodule W of M is called fully semiprime in M if whenever XXW for all fully invariant R-submodule X of M, implies XW.         M is called fully semiprime if (0) is a fully semiprime submodule of M. We give basic properties of these concepts. Also we study the relationships between fully semiprime submodules (modules) and other related submodules (modules) respectively.

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Al- Mustansiriya J. Sci
Rationally Extending Modules and Strongly Quasi-Monoform Modules
...Show More Authors

An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules

View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
On Fully Stable Banach Algebra Modules and Fully Pesudo Stable Banach Algebra Modules
...Show More Authors

The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
P-small Compressible Modules and P-small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this papers we introduced and studied concept P-small compressible  (An     is said to be P-small compressible if  can be embedded in every of it is nonzero P-small submodule of . Equivalently,  is P-small compressible if there exists a monomorphism  , ,     is said to be P-small retractable if  , for every non-zero P-small submodule of . Equivalently,  is P-small retractable if there exists a homomorphism  whenever  as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.

View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their adv

... Show More
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
E-small prime sub-modules and e-small prime modules
...Show More Authors

Scopus Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modules with Chain Conditions on S-Closed Submodules
...Show More Authors

  Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called  s- closed submodule denoted by  D ≤sc W, if D has   no  proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In  this  paper,  we study  modules which satisfies  the ascending chain  conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.

View Publication Preview PDF
Crossref
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Small Monoform Modules
...Show More Authors

 Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each   f ∈ Hom(N,M), f ≠ 0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules

View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Relationships between Relatively Cancellation Modules and Certain Types of Modules
...Show More Authors

Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.

View Publication Preview PDF
Crossref