In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
This paper intends to initiate a new type of generalized closed set in topological space with the theoretical application of generalized topological space. This newly defined set is a weaker form than the -closed set as well as -closed set. Some phenomenal characterizations and results of newly defined sets are inculcated in a proper manner. The characteristics of normal spaces and regular spaces are achieved in the light of the generalized pre-regular closed set.
In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreCancer is one of the dangerous diseases that afflict a person through injury to cells and tissues in the body, where a person is vulnerable to infection in any age group, and it is not easy to control and multiply between cells and spread to the body. In spite of the great progress in medical studies interested in this aspect, the options for those with this disease are few and difficult, as they require significant financial costs for health services and for treatment that is difficult to provide.
This study dealt with the determinants of liver cancer by relying on the data of cancerous tumours taken from the Iraqi Center for Oncology in the Ministry of Health 2017. Survival analysis has been used as a m
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreIn this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
The aims of this thesis are to study the topological space; we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore, we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied. On the other hand, we studied weakly/ strongly forms of ω-perfect mappings, namely -ω-perfect mappings, weakly -ω-perfect mappings and strongly-ω-perfect mappings; also, we investigate their fundamental properties. We devoted to study the relationship between weakly -ω-perfect mappings and strongly -ω-perfect mappings. As well as, some new generalizations of some definitions wh
... Show MoreIn this paper, we investigate prime near – rings with two sided α-n-derivations
satisfying certain differential identities. Consequently, some well-known results
have been generalized. Moreover, an example proving the necessity of the primness
hypothesis is given.
In this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th
... Show MoreIn this research, we introduce and study the concept of fibrewise bitopological spaces. We generalize some fundamental results from fibrewise topology into fibrewise bitopological space. We also introduce the concepts of fibrewise closed bitopological spaces,(resp., open, locally sliceable and locally sectionable). We state and prove several propositions concerning with these concepts. On the other hand, we extend separation axioms of ordinary bitopology into fibrewise setting. The separation axioms we extend are called fibrewise pairwise T_0 spaces, fibrewise pairwise T_1 spaces, fibrewise pairwise R_0 spaces, fibrewise pairwise Hausdorff spaces, fibrewise pairwise functionally Hausdorff spaces, fibrewise pairwise regular spaces, fibrewise
... Show MoreThe main purpose of this paper is to introduce a some concepts in fibrewise totally topological space which are called fibrewise totally mapping, fiberwise totally closed mapping, fibrewise weakly totally closed mapping, fibrewise totlally perfect mapping fibrewise almost totally perfect mapping. Also the concepts as totally adherent point, filter, filter base, totally converges to a subset, totally directed toward a set, totally rigid, totally-H-set, totally Urysohn space, locally totally-QHC totally topological space are introduced and the main concept in this paper is fibrewise totally perfect mapping in totally top