In this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
With simple and undirected connected graph Φ, the Schultz and modified Schultz polynomials are defined as and , respectively, where the summation is taken over all unordered pairs of distinct vertices in V(Φ), where V(Φ) is the vertex set of Φ, degu is the degree of vertex u and d(v,u) is the ordinary distance between v and u, u≠v. In this study, the Shultz distance, modified Schultz distance, the polynomial, index, and average for both have been generalized, and this generalization has been applied to some special graphs.
In this paper, a computer simulation is implemented to generate of an optical aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and spherical Zernike aberrations were simulated in a subroutine using MATLAB function and applied as a phase error in the aperture function of an imaging system. The studying demonstrated that the Point Spread Function (PSF) and Modulation Transfer Function (MTF) have been affected by these optical aberrations. Areas under MTF for different radii of the aperture of imaging system have been computed to assess the quality and efficiency of optical imaging systems. Phase conjugation of these types aberration has been utilized in order to correct a distorted wavefront. The results showed that
... Show MoreImage databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p
Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.
Orthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show MoreThe goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show MoreAbstract
The traffic jams taking place in the cities of the Republic of Iraq in general and the province of Diwaniyah especially, causes return to the large numbers of the modern vehicles that have been imported in the last ten years and the lack of omission for old vehicles in the province, resulting in the accumulation of a large number of vehicles that exceed the capacity of the city's streets, all these reasons combined led to traffic congestion clear at the time of the beginning of work in the morning, So researchers chose local area network of the main roads of the province of Diwaniyah, which is considered the most important in terms of traffic congestion, it was identified fuzzy numbers for
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
Because the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show More