This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to 92.19%, availability 92.375%, and reliability 100%. The proposed system managed five devices. The NSFM implemented using Java and C# languages.
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
Abstract
This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine
... Show MoreLying is a controversial issue as it is closely related to one's intended meaning to achieve certain pragmatic functions. The use of lying in literary works is closely related to the characters’ pragmatic functions as in the case of Miller's The Crucible where it is used as a deceptive complex phenomenon that cannot be observed out of context. That is, the use of lying as a deceptive phenomenon represents a violation to Grices's Maxims. Thus, the study aims to qualitatively examine the kinds of maxims being violated, the kinds of violations conducted, the strategies followed in the violations, and the pragmatic functions behind such violations across the different categories of lies. To this end, the (30) extracts fou
... Show MoreBackground: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreIt is estimated that over the next few decades, EOR will be used for the more than 50% of oil production in the US and worldwide. From these, in reservoir with viscositites ranging between 10 – 150 mPa.s, polymer flooding is suggsted as the EOR method. Therefore, there is an upper limit to the recommended range of reservoir oil viscosities for polymer flooding. To address the issue of this limitation of polymer injectivity and pumping efficiency, we propose a novel method. The method involves the use of Supramolecular Systems, which are composed of long-chain aminoacids and maleic acids post complexation. Their unique feature of resersible viscosities allows the operator to overcome
Purpose: The research aims to build an integrated knowledge framework for the basic research topic. The spirituality of the workplace is through access to the most important scientific proposals on these topics. In management thought framing, the knowledge within them in a serious attempt is to provide the appropriate answers about the intellectual dilemma of research by diagnosing the nature of the relationship with the influential elements and its historical development . Methodology: The study is relied on the analytical survey method. The research sample targeted (88) managers in the center of the Iraqi Ministry of Health exclusively from the researched senior leaders (general manager, assistant general manager, and head of department),
... Show MoreIn this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS
... Show MoreAssessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.
In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.
To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de
... Show More