Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
The spatial assessment criteria system for hybridizing renewable energy sources, such as hybrid solar-wind farms, is critical in selecting ideal installation sites that maximize benefits, reduce costs, protect the environment, and serve the community. However, a systematic approach to designing indicator systems is rarely used in relevant site selection studies. Therefore, the current paper attempts to present an inclusive framework based on content validity to create an effective criteria system for siting wind-solar plants. To this end, the criteria considered in the related literature are captured, and the top 10 frequent indicators are identified. The Delphi technique is used to subject commonly used factors to expert judgme
... Show MorePartial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column
... Show MoreThin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreTo reduce solar radiation transmittance into buildings through windows facing east or west during summer, a window inclination from vertical position is suggested. The inclination of the window glazing and the rate of unwanted solar radiation during summer can be calculated knowing the dialy inclination of the sun rays. The inclination of window glazing depends on the latitude of the position required. For instance in Baghdad which is at about 33o north latitude a slope of 15o for window glazing is sufficient to prevent about 419 MJ/m2 of total solar radiation energy from penetration during summer for clear glazing of window facing east. This value drops to about 96 MJ/m2 during winter. Therefore the ratio between the energy saved for co
... Show MoreDye-sensitized solar cell (DSSC) is one of the photochemical electric cells, which consists of the photoelectrode, the dye, the electrolyte, and the counter electrode. The advantage of DSSC is the low cost of the solar energy conversion into electricity because of inexpensive materials and the relative ease of the fabrication processes. In this study was selected solvent dye resolve to know most efficient in terms of conversion efficiency. A dye solution of water or ethanol and maxing in which eosin – y dissolves behaves like a colloid and explores the effect of sintering temperature of TiO2 films on the efficiency of dye sensitized solar cells. A study conducted on several samples at different temperatures. Exemplary efficiency of the
... Show MoreIn this paper, the performance of a silicon cell with a Fresnel lens (FL) for building a solar photovoltaic concentrator system was evaluated; the solar concentrator is a Fresnel lens, which is a point concentrator made of polymethyl-methacrylate (PMMA) as a thin lens for the optics system.
As the radiation from the sun on the solar cell is concentrated to the levels of solar radiation of 750, 1300, 1930, 2600, 4250, 7250, and 10500) W/m2, the work was conducted at the midday in summer weather conditions, with ambient temperatures ranging 40-45 °C. The evaluation was performed in three cases; each case was conducted in succession. The performance of the cell was evaluated first wit
... Show MoreNumerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00
... Show MoreThis paper presents an investigation of peristaltic flow of Bingham plastic fluid in an inclined tapered asymmetric channel with variable viscosity. Taken into consideration Hall current, velocity, thermal slip conditions, Energy equation is modeled by taking Joule heating effect into consideration and by holding assumption of long wavelength and low Reynolds number approximation these equations simplified into couple of non-linear ordinary differential equations that solved using perturbation technique. Graphical analysis has been involved for various flow parameters emerging in the problem. We observed two opposite behaviors for Hall parameter and Hartman number on velocity axial and temperature curves.
Abstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show More