The expanding of the medically important diseases created by multidrug-resistant Acinetobacter baumannii warrants the evolve a new methodology for prevention includes vaccination and treatment. Totally of forty-five clinical isolates identified as A.baumannii were obtained from hospitalized patients from three hospital in Baghdad City during the period from February 2016 to August 2016. Followed by diagnosing using different methods. Every strain was tested for susceptibility testing also some important virulence factorswere detected. Two isolates were chosen for the immunization and vaccine model, the first one remittent for most antibiotics except one are too virulence (strong) and the second is less virulent and resistance (weak).Enzyme-linked immunosorbent assaywas used for assessments of Toll like receptor 4,and Toll like receptor 2 concentrations in mouse serum at 14, 21 and 28 days of immunization. Results proved that the strong isolate showed resistance to all antibiotics except one and positive to all virulence factors except one, while the weak isolate resistance to Ceftriaxone, Cefotaxime, positive to tow virulence factors. Mice were intramuscular inoculated with strong and weak isolate. There are high significant differences when using strong A.baumannii strong in the level of TLR4 and there was not an important variation among the use of strong and weak isolation in the level of TLR2.Finaly,the yield refers to the TLR4 plays a key role in innate sensing with multidrug resistance isolate immunization, whereas TLR 2 shows it gives the same level of stimulation during immunization with both strains but lesser concentration than TLR4, so the inactivated with MDR isolate has a potential for development as a candidate vaccine for strong protection against MDR isolate infections.
Background: Bone defect healing is a multidimensional procedure with an overlapping timeline that involves the regeneration of bone tissue. Due to bone's ability to regenerate, the vast majority of bone abnormalities can be restored intuitively under the right physiological conditions. The goal of this study is to examine the immunohistochemistry of bone sialoprotein in order to determine the effect of local application of bone sialoprotein on the healing of a rat tibia generated bone defect. Materials and Methods: In this experiment, 48 albino male rats weighing 300-400 grams and aged 6-8 months will be employed under controlled temperature, drinking, and food consumption settings. The animals will be subjected to a surgical procedure o
... Show MoreObjective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show MoreA reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti
... Show More