Decolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80) % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.
In this work silicon solar cell has been used with semicircular grooves to improve its efficiency by reducing reflection of rays and increasing optical path through the cell. Software program for optical design (zemax) has been used by ray tracing mode to evaluate prototype efficiency when using detector beneath the cell. The prototype has aspect ratio (A.R=0.2) which is the best efficiency at incident angle (ϴ=0ͦ) and the best acceptance angle (ϴ=50ͦ).
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreA paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat metho
... Show More
In this work, a test room was built in Baghdad city, with (2*1.5*1.5) m3 in dimensions, while the solar chimneys (SC) were designed with aspect ratio (ar) bigger than 12. Test room was supplied by many solar collectors; vertical single side of air pass with ar equals 25, and tilted 45o double side of air passes with ar equals 50 for each pass, both collectors consist of flat thermal energy storage box collector (TESB) that covered by transparent clear acrylic sheet, third type of collector is array of evacuated tubular collectors with thermosyphon in 45o instelled in the bottom of TESB of vertical SC. The TESB was
... Show MoreThe present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
In this study three reactive dyes (blue B, red R and yellow Y) in single , binary and ternary solution were adsorbed by activated carbon AC in equilibrium and kinetic experiments. Surface area, Bulk and real density, and porosity were carried out for the activated carbon.
Batch Experiments of pH (2.5-8.5) and initial concentration (5-100) mg/l were carried out for single solution for each dye. Experiments of adsorbent dosage effect (0.1-1)g per 100 ml were studied as a variable to evaluate uptake% and adsorption capacity for single dyes(5, 10) ppm, binary and ternary (10) ppm of mixture solutions solution of dyes. Langmuir, and Freundlich, models were used as Equilibrium isotherm models for single solution. Extended Langmuir and Freun
Water hyacinth (Eichhornia crassipes) is a free-floating plant, growing plentifully in the tropical water bodies. It is being speculated that the large biomass can be used in wastewater treatment, heavy steel and dye remediation, as a substrate for bioethanol and biogas production, electrical energy generation, industrial uses, human food and antioxidants, medicines, feed, agriculture, and sustainable improvement. In this work, the adsorption of Congo Red (CR) from aqueous solution onto EC biomass was investigated through a series of batch experiments. The effects of operating parameters such as pH (3-9), dosage (0.1-0.9 g. /100 ml), agitated velocity (100-300), size particle (88-353μm), temperature (10-50˚C), initial dye
... Show MoreThe high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed o
... Show More