In the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy confirmed the production of nanosilver particles. The activity of produced silver NP was tested against three pathogens (Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii) in both liquid and solid growth medium. AgNPs presented potential antibacterial activity, against tested bacteria. Ag and Ag-AMP nanoparticles were detected to have penitent antimicrobial. The optical density (OD) of the culture solution and measuring zones of inhibition were used to monitor the growth of bacteria in liquid and solid growth medium respectively
In this study, titanium dioxide (TiO2) nanoparticles incorporated with cement were synthesis by a simple casting method as a function concentration of TiO2 (0.2, 0.4, 0.8, 1, and 2 wt%). The prepared samples were characterized using the technique of Field Emission Scanning Electron Microscope (FESEM) and UV-Visible spectrophotometer, which was used to measure the adsorption spectra. The observed photocatalytic efficiency of TiO2 nanoparticles (NP) incorporated with cement was investigated by decomposing the dye methyl blue (MB) solution under sunlight irradiation. According to the slope, the value of the k constant at the best sample is 0.8wt%, k=0.8265 min-1. FESEM image of the TiO2
... Show MoreIn this paper, CdO nanoparticles prepared by pulsed laser deposition techniqueonto a porous silicon (PS) surface prepared by electrochemical etching of p-type silicon wafer with resistivity (1.5-4Ω.cm) in hydrofluoric (HF) acid of 20% concentration. Current density (15 mA/cm2) and etching times (20min). The films were characterized by the measurement of AFM, FTIR spectroscopy and electrical properties.
Atomic Force microscopy confirms the nanometric size.Chemical components during the electrochemical etching show on surface of PSchanges take place in the spectrum of CdO deposited PS when compared to as-anodized PS.
The electrical properties of prepared PS; namely current density-voltage charact
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie
... Show MoreThis study includes using green or biosynthesis-friendly technology, which is effective in terms of low cost and low time and energy to prepare V2O5NPs nanoparticles from vanadium sulfate VSO4.H2O using aqueous extract of Punica Granatum at a concentration of 0.1M and with a basic medium PH= 8-12. The V2O5NPs nanoparticles were diagnosed using several techniques, such as FT-IR, UV-visible with energy gap Eg = 3.734eV, and the X-Ray diffraction XRD was calculated using the Debye Scherrer equation. It was discovered to be 34.39nm, Scanning Electron Microscope (SEM), Transmission Electron Microscopy TEM. The size, structure, and composition of synthetic V2O5
... Show MoreA study was conducted to evaluate the antibacterial effect of Phyllanthus emblica extract (ethanol:methanol, 1:1) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli at different concentrations, i.e. 0.625, 1.25, 2.50, 5.0, 10.0 and 20.0 mg/ml. The antibacterial activity was determined by the agar well diffusion method to investigate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The alcoholic extract of Phyllanthus emblica had the highest antibacterial activity at 20 mg/ml and 5 mg/ml except for Pseudomonas aeruginosa where the value of inhibition was between 20 and 10 mg/ml. The MIC concentrations were mostly very high and ranged from 5 to 1.25 mg/ml, while the MBC range fro
... Show MoreThe term of heterocyclic chemistry focuses only on heterocyclic compounds, which consider as a percentage of organic chemistry, they equal to greater than sixty-five. These compounds are widely founded in nature and most of them are important to life. In the past few years, scientist fused on 1,2,4-triazoles and their condensed heterocyclic ring due to their medicinal significance, 1,2,4-triazole containing Sulphur atom is one of the important heterocyclic moieties due to its broad range of biological activities also their derivatives can accommodate one of the alternatives as electronic effect as exchanges of the electronic density (electron donating or withdrawing) groups ; for all what mentioned above they are consider as a core
... Show More