In the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy confirmed the production of nanosilver particles. The activity of produced silver NP was tested against three pathogens (Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii) in both liquid and solid growth medium. AgNPs presented potential antibacterial activity, against tested bacteria. Ag and Ag-AMP nanoparticles were detected to have penitent antimicrobial. The optical density (OD) of the culture solution and measuring zones of inhibition were used to monitor the growth of bacteria in liquid and solid growth medium respectively
Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacteri
... Show MoreA huge potential from researchers was presented for enhancing the nonlinear optical response for materials that interacts by light. In this work, we study the nonlinear optical response for chemically prepared nano- fluid of silver nanoparticles in de-ionized water with TSC (Tri-sodium citrate) protecting agent. By the means of self-defocusing technique and under CW 473 nm blue laser, the reflected diffraction pattern were observed and recorded by CCD camera. The results demonstrate that, the Ag nano-fluid shows a good third order nonlinear response and the magnitude of the nonlinear refractive index was in the order of 10−7 cm2/W. We determine the maximum change of the nonlinear refractive index and the related phase shift for the mat
... Show MoreThe recent studies suggested the possible toxicities or genetic alterations associated with biological and medical applications of silver nanoparticles (AgNPs). The current research is directed to see if AgNPs administration can lead to some changes in expression of BRAF gene in selected body organs tissues. Fifty-six male of musmusculs (Balb/C) mice from the animal house of Al-Nahrain Centre of Biotechnology were used. These animals were divided randomly to seven groups (eight mouse in each group), one of these groups represented the control group, three groups were subjected to different doses of AgNPs (0.25, 0.5and 1 mg/kg of body weight) for one week, and the remaining three groups were subjected to three different doses of AgNP
... Show MoreCerebellum is the most important and critical part of the central nervous system, cerebellum is very sensitive to the abnormal changes during the embryological development in its histological structure, the exposure to any infection during embryogenesis produce abnormalities in the cerebellum and behavioral of offspring. In this study we tried to study the ontogenesis of the cerebellum in the embryos of the albino rats and detection the effect of the AgNPs on the ontogenesis of the rat cerebellum after exposure of AgNPs during pregnancy. we used 60 female pregnant rats divided in to three group, each contain 20 female, (G1) treated with 2mg/kg /day suspension of silver nanoparticles (Ag NPs) (G2) treated with 20mg/kg/day AgNPs from first da
... Show MoreDevelopment of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreFive isolates of Gram negative bacteria (Klebsiella pneumoniae, Psuedomonas auroginosa, proteus mirabilis and two strains of E.coli) were in quested for the ability of bearing silver nanoparticles by using LB medium, all the isolates of bacteria were buttered brown color just as soon as mixed the supernatant of bacterial culture with AgNO3 solution, that refered the biosynthesis of Silver nanoparticles (Ag NPs). UV–visible spectrophotometer and Fourier transform infrared (FTIR) spectroscopy were utilized for estimation of (Ag NPs). The five isolates of bacteria were tendered to produce spontaneous mutants by using different kinds of antibiotics, Ampicillin put to use for making mutant in E.coli and Proteus mirabillis, while Pseudom
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreBromelain is a proteolytic enzyme rich in cysteine proteases, extracted from the stem and fruit of pineapple (Ananas comosus). There are several therapeutic applications of the bromelain enzyme, where it has anti-inflammatory, anti-cancer, and antimicrobial activity, reduces joint pain, and accelerates wound healing. In the current study, bromelain enzyme was loaded on silver nanoparticles (Br-AgNPs) prepared using the citrate-reduction Turkevich method. Different characterization analyses were performed, including UV-Vis spectrophotometers, FTIR, SEM, and XRD analyses. Moreover, the antioxidant activity of prepared Br-AgNPs was evaluated by DPPH assay. The results of UV-Vis showed a peak at 434 nm, which referred to the AgNPs f
... Show More