In this paper we investigated some new properties of π-Armendariz rings and studied the relationships between π-Armendariz rings and central Armendariz rings, nil-Armendariz rings, semicommutative rings, skew Armendariz rings, α-compatible rings and others. We proved that if R is a central Armendariz, then R is π-Armendariz ring. Also we explained how skew Armendariz rings can be ?-Armendariz, for that we proved that if R is a skew Armendariz π-compatible ring, then R is π-Armendariz. Examples are given to illustrate the relations between concepts.
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Let R be an associative ring. In this paper we present the definition of (s,t)- Strongly derivation pair and Jordan (s,t)- strongly derivation pair on a ring R, and study the relation between them. Also, we study prime rings, semiprime rings, and rings that have commutator left nonzero divisior with (s,t)- strongly derivation pair, to obtain a (s,t)- derivation. Where s,t: R®R are two mappings of R.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
Let M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.
Newly 4-amino-1,2,4-triazole-3-thione ring 2 was formed at position six of 2-methylphenol from the reaction of 6-(5-thio1,3,4-oxadiazol-2-yl)-2-methylphenol 1 with hydrazine hydrochloride in the presence of anhydrase sodium acetate. Seven newly fused heterocyclic compounds were synthesized from compound 2. First fused heterocyclic was 6-(6-(3,5-di-tertbutyl-4-hydroxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-3-yl)-2-methylphenol 3 synthesized from reaction compound 2 with 3,5-di-tert-butyl-4-hydroxybenzoic acid in POCl3. Reaction compound 2 with bromophencylbromide afford 6-(6-(4-bromophenyl)-5H-[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazin-3-yl)-2-methylphenol 4. 6-(6-thio-1,7a-dihydro-[1,2,4] triazolo[3,4-b][1,3,4]-thiadiazol-3-yl)-2
... Show MoreAbstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.