A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5 -70 µg /25 ml, i.e., 0.02- 2.8 ppm with a molar absorptivity of chromium (VI) 1.71? 104 l.mol-1.cm-1, Sandell’s sensitivity index of 0.0030 µg.cm-2 .The detection limit of chromium was (DL) 0.0012 µg.mL-1 and a relative standard deviation of ? (0.70 -1.86)% depended on the concentration level. The method is developed for the determination of chromium(III) and has been successfully applied to the determination of chromium in various water samples, Pharmaceutical preparations ,standard rock sample of (MRG-1).
A non-destructive assay (NDA) for radioactive waste drum has been studied
using a local manufacturing gamma scanning system. The gamma system has been
designed and implemented using scanning system contains a high efficiency
portable HPGe detector for characterization and surveying the radioactive waste
drums at Al-Tuwaitha site- Baghdad. To achieve identification with nonhomogenous
radioactive waste drum, six parallel plastic pipes (2cm in diameter)
were inserted inside the cement type Portland contain radioactive sources and
located at different distances from the outer diameter of the drum. The efficiency
calibration is measured by conventional technique, using five miscellaneous radio
nuclides with drum. Th
Bacillus subtilis, an isolate of bacillus genus, was obtained from the laboratories of Ministry of Science and Technology. The best efficient Bacillus subtilis isolate in cellulose and semi-cellulose hydrolysis was treated with Dielectric-barrier Discharge (DBD). Atmospheric cold plasma technique (non-thermal) was used by exposing them at different times (2, 3, 4 and 5 mins) separately as a first stage, and then 60 seconds after any treatment separately as a second stage. After 48 hours, the difference between the plasma source and the sample was fixed at 0.5 cm. The results showed a variation in the growth of the isolate according to the exposure time by the appearance of culture turbidity and the estimation o
... Show MoreCoblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
Incremental sheet forming (ISF) is a metal forming technology in which small incremental deformations determine the final shape. The sheet is deformed by a hemispherical tool that follows the required shape contour to deform the sheet into the desired geometry. In this study, single point incremental sheet forming (SPIF) has been implemented in dentistry to manufacture a denture plate using two types of stainless steel, 304 and 316L, with an initial thickness of 0.5mm and 0.8mm, respectively. Stainless steel was selected due to its biocompatibility and reasonable cost. A three-dimensional (3D) analysis procedure was conducted to evaluate the manufactured part's geometrical accuracy and thickness distribution. The obtained results confirm
... Show MoreRenewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of
... Show MoreThe main aim of this paper is studied the punching shear and behavior of reinforced concrete slabs exposed to fires, the possibility of punching shear failure occurred as a result of the fires and their inability to withstand the loads. Simulation by finite element analysis is made to predict the type of failure, distribution temperature through the thickness of the slabs, deformation and punching strength. Nonlinear finite element transient thermal-structural analysis at fire conditions are analyzed by ANSYS package. The validity of the modeling is performed for the mechanical and thermal properties of materials from earlier works from literature to decrea
... Show MoreNumerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.