A rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium is studied. The method is based on the interaction of chromium with indigo carmine dye in acidic medium and the presence of oxalates as a catalyst for interaction, and after studying the absorption spectrum of the solution resulting observed decrease in the intensity of the absorption. As happened (Bleaching) for color dye, this palace and directly proportional to the chromium (VI) amount was measured intensity of the absorption versus solution was figurehead at a wavelength of 610 nm. A plot of absorbance with chromium (VI) concentration gives a straight line indicating that Beer’s law has been obeyed over the range of 0.5 -70 µg /25 ml, i.e., 0.02- 2.8 ppm with a molar absorptivity of chromium (VI) 1.71? 104 l.mol-1.cm-1, Sandell’s sensitivity index of 0.0030 µg.cm-2 .The detection limit of chromium was (DL) 0.0012 µg.mL-1 and a relative standard deviation of ? (0.70 -1.86)% depended on the concentration level. The method is developed for the determination of chromium(III) and has been successfully applied to the determination of chromium in various water samples, Pharmaceutical preparations ,standard rock sample of (MRG-1).
A simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) r
... Show MoreThe semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11. The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ
... Show MoreA spectrophotometric method is proposed for the determination of some drugs containing amino group such as mesalazine, metoclopramide and dopamine in pharmaceutical formulations. It was simple, precise, accurate, rapid, and based on the oxidation of each drug with chromate as an oxidizing agent in the presence of 1N hydrochloric acid. Then indigo carmine is reacted with residual chromate in the presence of a catalysis factor (sodium oxalate). Increasing in absorbance's value of the color system is proportional to the amount of the three drugs which is measured at the selected wavelength of 610 nm.
The proposed method is obeying Beer's law in the ranges of (1-40, 2-44 and 2-52) ppm for the concentration of
... Show MoreA simple, accurate and sensitive spectrophotometric method for the determinaion of epinephrine is described . The method is based on the coordination of Pr (III) with epinephrine at pH 6. Absorbance of the resulting orange yellow complex is measured at 482 nm . A graph of absorbance versus concentrations shows that beer 's low is obeyed over the concentration range (1-50)mg.ml-1 of epinephrine with molar absorpitivity of ( 2.180x103 L.mol-1.cm-1 ), a sandell sensitivity of (0.084 mg.cm-2 ), a relative error of (-2.83%) , a corrolation coffecient (r= 0.9989) and recovery % ( 97.03 ± 0.75 ) depending on the concentration.This method is applied to analyse EP in several commercially available pharmaceutical preparations
... Show MoreFor the determination of metoclopramide hydrochloride (MCPD) in pharmaceutical formulations, a rapid and straightforward spectrophotometric method has been proposed. The method involves diazotizing the main amino group of MCPD with sodium nitrite followed by coupling reaction with reagent 1,7-Dihydroxynaphthalene (1,7-DHN) to form a stable and colored compound in alkaline medium of sodium hydroxide which showed a maximum absorbance intensity at the wavelength 578 nm. The linearity of developed method has ranged from 1.0 - 15 µg.ml-1 while the molar absorptivity 2.9867x104 l.mol-1.cm-1, RSD% was less than 1.11%. While the LOD and LOQ were 0.059 µg.ml-1
... Show MoreMetal contents in vegetables are interesting because of issues related to food safety and potential health risks. The availability of these metals in the human body may perform many biochemical functions and some of them linked with various diseases at high levels. The current study aimed to evaluate the concentration of various metals in common local consumed vegetables using ICP-MS. The concentrations of metals in vegetables of tarragon, Bay laurel, dill, Syrian mesquite, vine leaves, thymes, arugula, basil, common purslane and parsley of this study were found to be in the range of, 76-778 for Al, 10-333 for B, 4-119 for Ba, 2812-24645 for Ca, 0.1-0.32 for Co, 201-464 for Fe, 3661-46400 for K, 0.31–1.
... Show MoreLiquid membrane electrodes for the determination iron(III) were constructed based on chloramphenicol sodium succinate and iron(III) CPSS-Fe(III) as ion pair complex, with four plasticizers Di-butyl phosphate (DBP); Di-butyl phthalate (DBPH); Di-octyl phthalate (DOP); Tri-butyl phosphate (TBP); in PVC matrix . These electrodes give Nernstian and sub-Nernstian slopes (19.79, 24.60, 16.01 and 13.82mV/decade) and linear ranges from (1x10-5-1x10-2 M, 1x10-5-1x10-2 M, 1x10-6-1x10-2 M and 1x10-5-1x10-2 M) respectively. The best electrode was based on DBP plasticizer which gave a slope 19.79 mV/decade, correlation coefficient 0.9999, detection limit of 9×10-6 M, lifetime 37 day displayed good stability and reproducibility and used to determine
... Show MoreTwosimple, sensitive,accurate, and precise spectrophotometric methods have been developed for the determination of chlorpromazine – HCl in pure form and pharmaceutical formulation. The first method involved treatment of cited drug with a measured excess of permanganate in acid medium and the unreacted oxidant was measured at 525 nm. The second method involves the reaction of the drug with potassium permanganate in the presence of sodium hydroxide to produce a bluish – green colored manganite which is measurable at 610nm. All the experimental variables affecting the development of the manganite ions were investigatedand conditions were optimized. Working linearity ranges were 5-45 µg.mL-1an
... Show MoreA new spectrophotometric method for the determination of allopurinol drug was investigated. The proposed method was based on the reaction of the intended drug with catechol and Fe(II) to form a blue soluble complex which was measured at λmax 580 nm. A graph of absorbance versus concentration shown that Beer’s law was obeyed over the concentration range of 2–10 μg ml–1 with molar absorptivity of 9.4 x 103 l mol–1 cm–1 and Sandell sensitivity of 1.4 x 10–2 μg cm–2. A recovery percentage of 100% with RSD of 1.0%–1.3% was obtained. The proposed method was applied successfully for the determination of allopurinol drug in tablets with a good accuracy and
A rapid, sensitive and selective spectrophotometric method was developed for determination of sulfathiazole (STHZ) in aqueous solution. The method is based on the oxidative coupling reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH) in a basic medium (pH 10.9) in the presence of potassium periodate to produce an intense orange colour, soluble in water , stable product and absorbs at 492 nm. Beer's law was in the linear range 2.0-28.0 μg/ml of sulfathiazole, the molar absorptivity, Sandellʼs sensitivity index and detection limit were 1.1437 ×104 liter. mol-1.cm-1,0.0223 μg.cm-2 and 0.1274 μg/ml respectively. The RSD value was 0.75 - 1.12 % depending on the concentration. This method was applied successfu
... Show More