In this paper we will study some of the properties of an operator by looking at the associated S-act of this operator, and conversely. We look at some operators, like one to one operators, onto operators. On the other hand, we look at some act theoretic concepts, like faithful acts, finitely generated acts, singular acts, separated acts, torsion free acts and noetherian acts. We try to determine what properties of T make the associated S-act has any of these properties.
This study presents certain modifications done to the conditions set by Searle
(1969: 57) concerning the speech act of promising in order to render them to selected
sayings of Prophet Muhammad (P.B.U.H.) and Jesus Christ (P.B.U.H.) and to
political texts. These modifications make the conditions of the speech act of
promising appropriate for sincere promises made by the Messengers of God since
they deliver their Messages of God but they are unable, as Messengers, to fulfill
God’s promises which they make as part of their Messages and by representatives of
States who deliver speeches on behalf of their Governments. These are the only two
situations where the speakers can make promises and do not fulfill these prom
This paper introduces a Certain Subclass of Meromorphic Univalent Positives Coefficients Defined by the q-Difference Operator. Coefficient estimates are investigated and obtained, and the upped bound is calculated.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreThis paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
Detecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This research deals with an important grammatical section of the Qur'anic grammar, which is the working names the work of acts in the Quranic grammar in the studies of Iraqi researchers from 1968 to 200 AD.
The study of working names working verb in the Koran of the important studies, especially among Iraqi researchers, the Iraqi researcher has presented detailed studies related to working names particles action verb in the Koran, and my research is studying this important grammatical section of the Koranic grammar, which is the working names working verb in The Holy Quran in the books of Iraqi researchers and their theses from 1968-2000. I studied in the preface working names of the act, and what the Iraqi res