In this paper, the path of the extracted and focused ions by the electrostatic lense having three electrodes of the same size and shape have been studied. However, the first and third electrodes had a different potential from the second electrode and the distance between any three electrodes was (d).The beams of the charged particles were controlled by using electrostatic fields which are used for accelerating and focusing. This paper focuses also on the effect of electrodes potentials on ion beam focusing. It is found that the best focusing was achieved when the values of the potential of the first and third electrode are equal to half of the value of the second electrode. Concerning transmiting and acumulating the ions beams, the study shows that these beams stayed fixed and steady when their paths were doubled, without any change in extracted beam density. This method is called Plasma Portation.
The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed rad
... Show MoreWe study in this paper the composition operator that is induced by ?(z) = sz + t. We give a characterization of the adjoint of composiotion operators generated by self-maps of the unit ball of form ?(z) = sz + t for which |s|?1, |t|<1 and |s|+|t|?1. In fact we prove that the adjoint is a product of toeplitz operators and composition operator. Also, we have studied the compactness of C? and give some other partial results.
The numerical investigation has been performed to study the radiation affected steady state laminar mixed convection induced by a hot inner varied positions circular core in a horizontal rectangular channel for a fully developed flow. To examine the effects of thermal radiation on thermo fluid dynamics behavior in the eccentric geometry channel, the generalized body fitted co-ordinate system is introduced while the finite difference method is used for solving the radiative transport equation. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function. After validating numerical results for the case without radiation, the detailed radiatio
... Show MoreSteady conjugate natural convection heat transfers in a two-dimensional enclosure filled with fluid saturated porous medium is studied numerically. The two vertical boundaries of the enclosure are kept isothermally at same temperature, the horizontal upper wall is adiabatic, and the horizontal lower wall is partially heated. The Darcy extended Brinkman Forcheimer model is used as the momentum equation and Ansys Fluent software is utilized to solve the governing equations. Rayleigh number (1.38 ≤ Ra ≤ 2.32), Darcy number (3.9 * 10-8), the ratio of conjugate wall thickness to its height (0.025 ≤ W ≤ 0.1), heater length to the bottom wall ratio (1/4 ≤ ≤ 3/4) and inclination angle (0°, 30° and 60°) are the main consid
... Show MoreThe article analyzes the ideological and genre features of L. Ulitskaya's work "The Plague, or OOI in the City", examines the features of building an artistic whole, ways of creating images of characters and their characteristics, stylistic features of the work.
The research was conducted in a plastic greenhouse at the College of Agricultural Engineering Sciences, University of Baghdad - Jadiriyah Campus, during the 2021-2022 season, to study the effect of phosphorus, silicon, and citric acid on pepper plants using a factorial experiment design with three replicates. The first factor had three levels of phosphorus (0, 160, and 320 kg P2O5 per hectare), the second factor had three levels of potassium silicate (0, 75, and 100 kg per hectare), and the third factor had four levels of citric acid (0, 2, 4, and 6 kg per hectare). The statistical analysis showed that treatment P2S2C1 resulted in an increase
We investigate mathematical models of the Hepatitis B and C viruses in the study, considering vaccination effects into account. By utilising fractional and ordinary differential equations, we prove the existence of equilibrium and the well-posedness of the solution. We prove worldwide stability with respect to the fundamental reproduction number. Our numerical techniques highlight the biological relevance and highlight the effect of fractional derivatives on temporal behaviour. We illustrate the relationships among susceptible, immunised, and infected populations in our epidemiological model. Using comprehensive numerical simulations, we analyse the effects of fractional derivatives and highlight solution behaviours. Subsequent investigatio
... Show MoreAmidst the changes resulting from the subject matter of expression in art. The necessity of searching for the expressive features of thought that leaves different imprints with aesthetic features and values which called for re-modifying the expressive vision of contemporary drawings. Therefore, this research has been concerned with the study of (abstract expressive features in the drawings of (Serwan Baran) and (Eric Barto) - a comparative study), and the research includes four chapters. The first chapter is devoted to explaining the research problem, its importance, need, purpose, and limits, then determining the most important terms mentioned in it. Where the research problem dealt with the subject of abstract expressive feature
... Show More